TOSHIBA

Heat Pump Fix Speed Series

Service Manual 2017

This manual applies to the models as below:

RAS-07PKH2S-EE/RAS-07PAH2S-EE

RAS-09PKH2S-EE/RAS-09PAH2S-EE

RAS-12PKH2S-EE/RAS-12PAH2S-EE

RAS-18PKH2S-EE/RAS-18PAH2S-EE

RAS-24PKH2S-EE/RAS-24PAH2S-EE

CONTENTS

1. Precaution	3
1.1 Safety Precaution	3
1.2 Warning	3
2. Model List	6
3. Dimension	6
3.1 Indoor Unit	6
3.2 Outdoor Unit	9
4. Refrigerant Cycle Diagram	10
5 Installation Details	11
5.1 Wrench torque sheet for installation	11
5.2 Connecting the cables	11
5.3 Pipe length and the elevation	12
5.4 Installation for the first time	13
6.5 Adding the refrigerant after running the system for many years	14
5.6 Re-installation while the indoor unit need to be repaired	15
5.7 Re-installation while the outdoor unit need to be repaired	16
6. Wiring Diagram	17
6.1 Indoor Unit	17
6.2 Outdoor Unit	19
7. Operation Characteristics	20
8. Electronic function	21
8.1 Abbreviation	21
8.2 Display function	21
8.3 Main Protection	22
8.4 Operation Modes and Functions	23
9. Troubleshooting	28
9.1 Indoor Unit Error Display	28
9.2 Diagnosis and Solution	29

1. Precaution

1.1 Safety Precaution

- To prevent injury to the user or other people and property damage, the following instructions must be followed.
- Incorrect operation due to ignoring instruction will cause harm or damage.
- Before service the unit, be sure to read this service manual at first.

1.2 Warning

> Installation

■ Do not use a defective or underrated circuit breaker. Use this appliance on a dedicated circuit.

There is risk of fire or electric shock.

■ For electrical work, contact the dealer, seller, a qualified electrician, or an authorized service center.

Do not disassemble or repair the product, there is risk of fire or electric shock.

Always ground the product.

There is risk of fire or electric shock.

Install the panel and the cover of control box securely.

There is risk of fire of electric shock.

Always install a dedicated circuit and breaker.

Improper wiring or installation may cause fore or electric shock.

■ Use the correctly rated breaker of fuse.

There is risk of fire or electric shock.

Do not modify or extend the power cable.

There is risk of fire or electric shock.

■ Do not install, remove, or reinstall the unit by yourself (customer).

There is risk of fire, electric shock, explosion, or injury.

■ Be caution when unpacking and installing the product.

Sharp edges could cause injury, be especially

careful of the case edges and the fins on the condenser and evaporator.

- For installation, always contact the dealer or an authorized service center.
- Do not install the product on a defective installation stand.
- Be sure the installation area does not deteriorate with age.

If the base collapses, the air conditioner could fall with it, causing property damage, product failure, and personal injury.

- Do not let the air conditioner run for a long time when the humidity is very high and a door or a window is left open.
- Take care to ensure that power cable could not be pulled out or damaged during operation.

There is risk of fire or electric shock.

■ Do not place anything on the power cable.

There is risk of fire or electric shock.

■ Do not plug or unplug the power supply plug during operation.

There is risk of fire or electric shock.

- Do not touch (operation) the product with wet hands.
- Do not place a heater or other appliance near the power cable.

There is risk of fire and electric shock.

■ Do not allow water to run into electrical parts.

It may cause fire, failure of the product, or electric shock.

■ Do not store or use flammable gas or combustible near the product.

There is risk of fire or failure of product.

■ Do not use the product in a tightly closed space for a long time.

Oxygen deficiency could occur.

- When flammable gas leaks, turn off the gas and open a window for ventilation before turn the product on.
- If strange sounds or smoke comes from product, turn the breaker off or disconnect the power supply cable.

There is risk of electric shock or fire.

■ Stop operation and close the window in storm or hurricane. If possible, remove the product from the window before the hurricane arrives.

There is risk of property damage, failure of product, or electric shock.

■ Do not open the inlet grill of the product during operation. (Do not touch the electrostatic filter, if the unit is so equipped.)

There is risk of physical injury, electric shock, or product failure.

■ When the product is soaked, contact an authorized service center.

There is risk of fire or electric shock.

■ Be caution that water could not enter the product.

There is risk of fire, electric shock, or product damage.

■ Ventilate the product from time to time when operating it together with a stove etc.

There is risk of fire or electric shock.

■ Turn the main power off when cleaning or maintaining the product.

There is risk of electric shock.

■ When the product is not be used for a long time, disconnect the power supply plug or turn off the breaker.

There is risk of product damage or failure, or unintended operation.

■ Take care to ensure that nobody could step on or fall onto the outdoor unit.

This could result in personal injury and product damage.

> CAUTION

Always check for gas (refrigerant) leakage after installation or repair of product.

Low refrigerant levels may cause failure of product.

Install the drain hose to ensure that water is drained away properly.

A bad connection may cause water leakage.

■ Keep level even when installing the product.

It can avoid vibration of water leakage.

■ Do not install the product where the noise or hot air from the outdoor unit could damage the neighborhoods.

It may cause a problem for your neighbors.

- Use two or more people to lift and transport the product.
- Do not install the product where it will be exposed to sea wind (salt spray) directly.

It may cause corrosion on the product.

Corrosion, particularly on the condenser and evaporator fins, could cause product malfunction or inefficient operation.

➤ Operational

- Do not expose the skin directly to cool air for long time. (Do not sit in the draft).
- Do not use the product for special purposes, such as preserving foods, works of art etc. It is a consumer air conditioner, not a precision refrigerant system.

There is risk of damage or loss of property.

- Do not block the inlet or outlet of air flow.
- Use a soft cloth to clean. Do not use harsh detergents, solvents, etc.

There is risk of fire, electric shock, or damage to the plastic parts of the product.

- Do not touch the metal parts of the product when removing the air filter. They are very sharp.
- Do not step on or put anything on the product. (outdoor units)
- Always insert the filter securely. Clean the filter every two weeks or more often if necessary.

A dirty filter reduces the efficiency of the air conditioner and could cause product malfunction or damage.

- Do not insert hands or other objects through air inlet or outlet while the product is operated.
- Do not drink the water drained from the product.
 - Use a firm stool or ladder when

cleaning or maintaining the product.

Be careful and avoid personal injury.

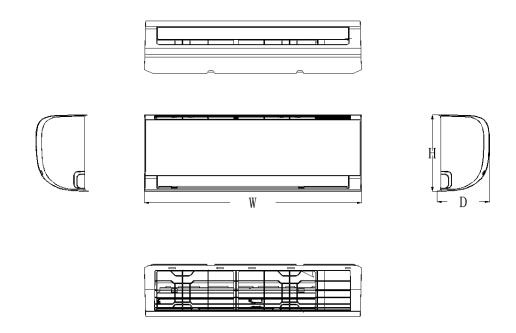
■ Replace the all batteries in the remote control with new ones of the same type. Do not mix old and new batteries or different types of batteries.

There is risk of fire or explosion.

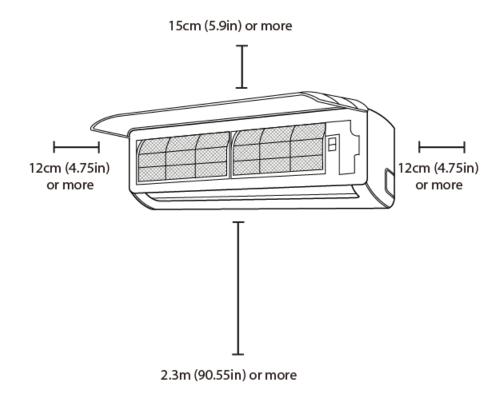
■ Do not recharge or disassemble the batteries. Do not dispose of batteries in a fire.

They may burn of explode.

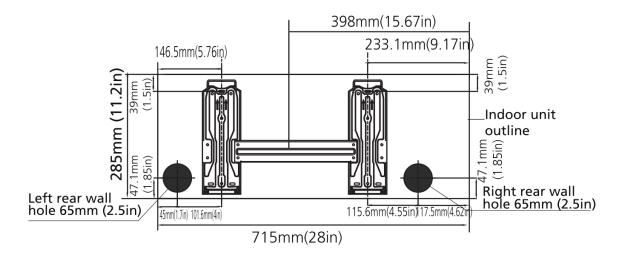
■ If the liquid from the batteries gets onto your skin or clothes, wash it well with clean water. Do not use the remote of the batteries have leaked.

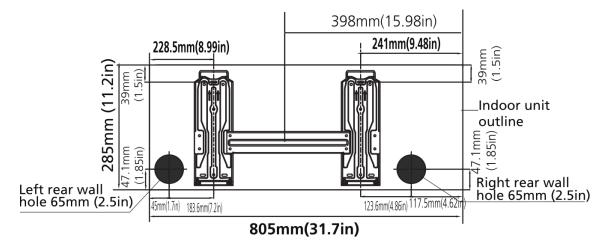

2. Model List

Model Names of Indoor/Outdoor Units

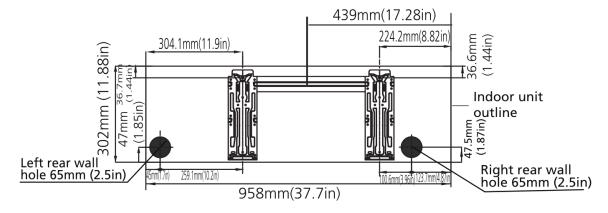

	Capacity	Indoor units	Outdoor units
	7k	RAS-07PKH2S-EE	RAS-07PAH2S-EE
On-Off	9k	RAS-09PKH2S-EE	RAS-09PAH2S-EE
On-On	12k	RAS-12PKH2S-EE	RAS-12PAH2S-EE
	18k	RAS-18PKH2S-EE	RAS-18PAH2S-EE
	24k	RAS-24PKH2S-EE	RAS-24PAH2S-EE

3. Dimension

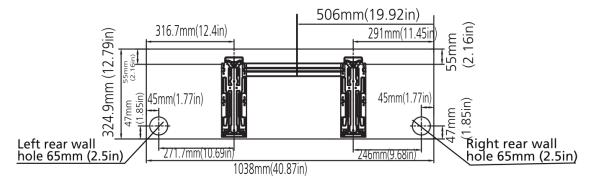

3.1 Indoor Unit


Model	W	D	Н
RAS-07PKH2S-EE	715	194	285
RAS-09PKH2S-EE	715	194	285
RAS-12PKH2S-EE	805	194	285
RAS-18PKH2S-EE	957	213	302
RAS-24PKH2S-EE	1040	220	327

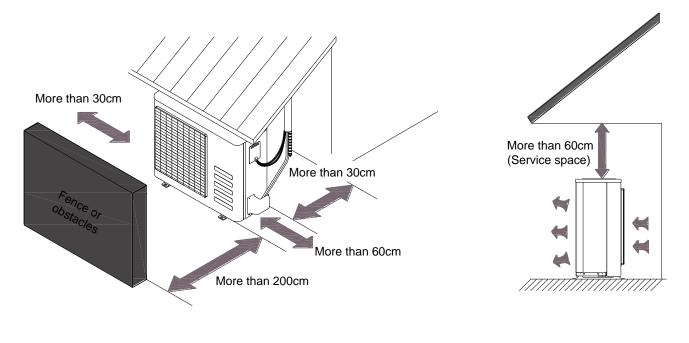
For RAS-07PKH2S-EE & RAS-09PKH2S-EE

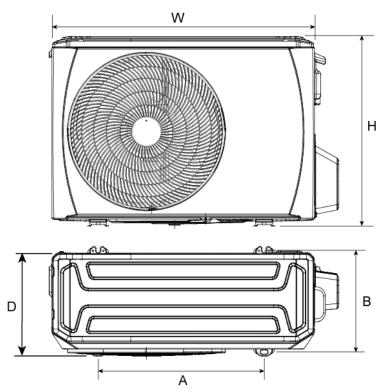


Model A

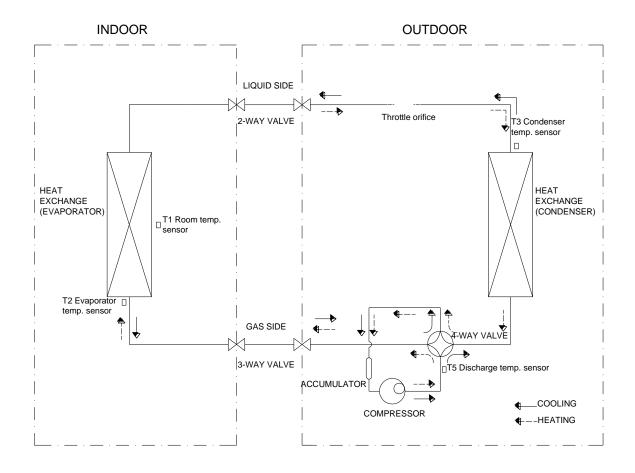

Model B

For RAS-18PKH2S-EE


Model C


For RAS-24PKH2S-EE

Model D


3.2 Outdoor Unit

Outdoor Unit Dimension(mm)				Mounting Di	mension(mm)
Outdoor Unit	W	Н	D	А	В
RAS-07PAH2S-EE	700	700 550 00	275	400	076
RAS-09PAH2S-EE	700	550	275	460	276
RAS-12PAH2S-EE	770	555	300	487	298
RAS-18PAH2S-EE	770	555	300	407	296
RAS-24PAH2S-EE	845	702	363	540	376

4. Refrigerant Cycle Diagram

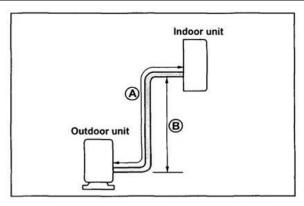
5 Installation Details

5.1 Wrench torque sheet for installation

Outside	Outside diameter Torque		Additional tightening torque
mm	inch	N.cm	N.cm
Ф6.35	1/4	1500(153kgf.cm)	1600(163kgf.cm)
Ф9.52	3/8	2500(255kgf.cm)	2600(265kgf.cm)
Ф12.7	1/2	3500(357kgf.cm)	3600(367kgf.cm)
Ф15.9	5/8	4500(459kgf.cm)	4700(479kgf.cm)
Ф19	3/4	6500(663kgf.cm)	6700(683kgf.cm)

5.2 Connecting the cables

The power cord of connect should be selected according to the following specifications sheet.


Rated current of appliance	Nominal cross-sectional area (mm²)
>3 and ≤6	0.75
>6 and ≤10	1
>10 and ≤16	1.5
>16 and ≤25	2.5
>25 and ≤32	4

The cable size and the current of the fuse or switch are determined by the maximum current indicated on the nameplate which located on the side panel of the unit. Please refer to the nameplate before selecting the cable, fuse and switch.

5.3 Pipe length and the elevation

The pipe length and refrigerant amount:

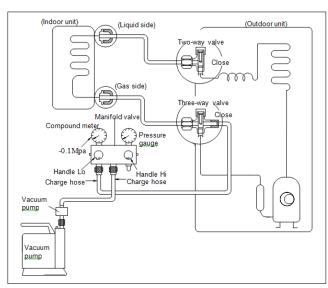
Model	Pipe	size	Standard	Max. Bevation	Max.	Additional
wodei	Gas	Liquid	length (m)	B (m)	Length A (m)	refrigerant (g/m)
RAS-07PKH2S-EE/RAS-07PAH2S-EE	3/8"	1/4"	5	8	20	20
	(Ф9.52)	(Ф6.35)	5	8	20	20
RAS-09PKH2S-EE/RAS-09PAH2S-EE	3/8"	1/4"	5	8	20	20
	(Ф9.52)	(Ф6.35)	3	8	20	20
RAS-12PKH2S-EE/RAS-12PAH2S-EE	1/2"	1/4"	5	8	20	20
	(Ф12.7)	(Ф6.35)	3	8	20	20
RAS-18PKH2S-EE/RAS-18PAH2S-EE	1/2"	1/4"	5	10	25	20
	(Ф12.7)	(Ф6.35)	3	10	25	20
RAS-24PKH2S-EE/RAS-24PAH2S-EE	5/8"	3/8"	5	10	25	40
	(Ф15.9)	(Ф9.52)	3	10	25	40

Caution:

The capacity test is based on the standard length and the maximum permissive length is based on the system reliability.

5.4 Installation for the first time

Air and moisture in the refrigerant system have undesirable effects as below:

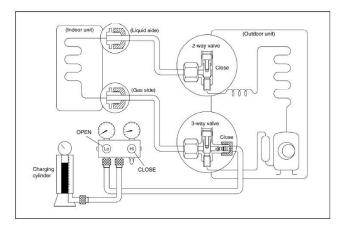

- Pressure in the system rises.
- Operating current rises.
- Cooling or heating efficiency drops.
- Moisture in the refrigerant circuit may freeze and block capillary tubing.
- Water may lead to corrosion of parts in the refrigerant system.

Therefore, the indoor units and the pipes between indoor and outdoor units must be leak tested and evacuated to remove gas and moisture from the system.

Gas leak check (Soap water method):

Apply soap water or a liquid neutral detergent on the indoor unit connections or outdoor unit connections by a soft brush to check for leakage of the connecting points of the piping. If bubbles come out, the pipes have leakage.

1. Air purging with vacuum pump


- Completely tighten the flare nuts of the indoor and outdoor units, confirm that both the 2-way and 3-way valves are set to the closed position.
- Connect the charge hose with the push pin of handle lo to the 3-way valves gas service port.
- Connect the charge hose of handle hi connection to the vacuum pump.

- Fully open the handle Lo of the manifold valve.
- 5) Operate the vacuum pump to evacuate.
- 6) Make evacuation for 30 minutes and check whether the compound meter indicates -0.1Mpa. If the meter does not indicate -0.1Mpa after pumping 30 minutes, it should be pumped 20 minutes more. If the pressure can't achieve -0.1Mpa after pumping 50 minutes, please check if there are some leakage points.

Fully close the handle Lo valve of the manifold valve and stop the operation of the vacuum pump. Confirm that the gauge needle does not move (approximately 5 minutes after turning off the vacuum pump).

- 7) Turn the flare nut of the 3-way valves about 45° counterclockwise for 6 or 7seconds after the gas coming out, then tighten the flare nut again. Make sure the pressure display in the pressure indicator is a little higher than the atmosphere pressure. Then remove the charge hose from the 3 way valve.
- 8) Fully open the 2 way valve and 3 way valve and securely tighten the cap of the 3 way valve.

2. Air purging by refrigerant

Procedure:

- 1). Confirm that both the 2-way and 3-way valves are set to the closed position.
- 2). Connect the charge set and a charging cylinder to the service port of the 3-way valve.
- 3). Air purging.

Open the valves on the charging cylinder and the

charge set. Purge the air by loosening the flare nut on the 2-way valve approximately 45' for 3 seconds then closing it for 1 minute; repeat 3 times.

After purging the air, use a torque wrench to tighten the flare nut on the 2-way valve.

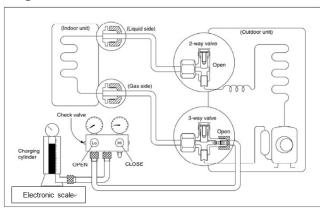
4). Check the gas leakage.

Check the flare connections for gas leakage.

5). Discharge the refrigerant.

Close the valve on the charging cylinder and discharge the refrigerant by loosening the flare nut on the 2-way valve approximately 45' until the gauge indicates 0.3 to 0.5 Mpa.

6). Disconnect the charge set and the charging cylinder, and set the 2-way and 3-way valves to the open position.


Be sure to use a hexagonal wrench to operate the valve stems.

7). Mount the valve stems nuts and the service port cap.

Be sure to use a torque wrench to tighten the service port cap to a torque 18N·m.

Be sure to check the gas leakage.

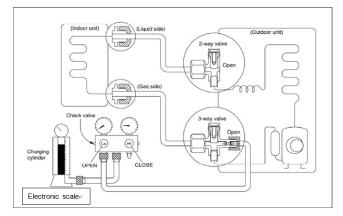
3. Adding the refrigerant if the pipe length >5m

Procedure:

1). Connect the charge hose to the charging cylinder, open the 2-way valve and the 3-way valve.

Connect the charge hose which you disconnected from the vacuum pump to the valve at the bottom of the cylinder. If the refrigerant is R410A, make the cylinder bottom up to ensure the liquid charge.

Purge the air from the charge hose.Open the valve at the bottom of the cylinder


and press the check valve on the charge set to purge the air (be careful of the liquid refrigerant).

- 3) Put the charging cylinder onto the electronic scale and record the weight.
- 4) Operate the air conditioner at the cooling mode.
- 5) Open the valves (Low side) on the charge set and charge the system with liquid refrigerant.
- 6). When the electronic scale displays the proper weight (refer to the table), disconnect the charge hose from the 3-way valve's service port immediately and turn off the air conditioner before disconnecting the hose.
- 7). Mount the valve stem caps and the service port

Use torque wrench to tighten the service port cap to a torque of 18N.m.

Be sure to check for gas leakage.

6.5 Adding the refrigerant after running the system for many years

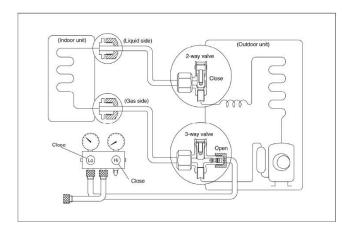
Procedure:

- 1). Connect the charge hose to the 3-way service port, open the 2-way valve and the 3-way valve. Connect the charge hose to the valve at the bottom of the cylinder. If the refrigerant is R410A, make the cylinder bottom up to ensure liquid charge.
- 2). Purge the air from the charge hose.

Open the valve at the bottom of the cylinder and press the check valve on the charge set to purge the air (be careful of the liquid refrigerant).

- 3) Put the charging cylinder onto the electronic scale and record the weight.
- 4) Operate the air conditioner at the cooling

mode.


- 5) Open the valves (Low side) on the charge set and charge the system with liquid refrigerant.
- 6). When the electronic scale displays the proper weight (refer to the gauge and the pressure of the low side), disconnect the charge hose from the 3-way valve's service port immediately and turn off the air conditioner before disconnecting the hose.
- 7). Mount the valve stem caps and the service port

Use torque wrench to tighten the service port cap to a torque of 18N.m.

Be sure to check for gas leakage.

5.6 Re-installation while the indoor unit need to be repaired

1. Collecting the refrigerant into the outdoor unit

Procedure

1). Confirm that both the 2-way and 3-way valves are set to the opened position

Remove the valve stem caps and confirm that the valve stems are in the opened position.

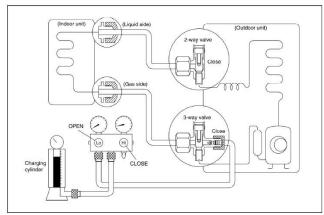
Be sure to use a hexagonal wrench to operate the valve stems.

- 2). Connect the charge hose with the push pin of handle lo to the 3-way valves gas service port.
- 3). Air purging of the charge hose.

Open the handle Lo valve of the manifold valve slightly to purge air from the charge hose for 5 seconds and then close it quickly.

- 4). Set the 2-way valve to the close position.
- 5). Operate the air conditioner at the cooling cycle and stop it when the gauge indicates 0.1MPa.
- 6). Set the 3-way valve to the closed position

immediately


Do this quickly so that the gauge ends up indicating 0.3 to 0.5Mpa.

Disconnect the charge set, and tighten the 2-way and 3-way valve's stem nuts.

Use a torque wrench to tighten the 3-way valves service port cap to a torque of 18N.m.

Be sure to check for gas leakage.

2. Air purging by the refrigerant

Procedure:

- 1). Confirm that both the 2-way and 3-way valves are set to the closed position.
- 2). Connect the charge set and a charging cylinder to the service port of the 3-way valve Leave the valve on the charging cylinder closed.
- 3). Air purging.

Open the valves on the charging cylinder and the charge set. Purge the air by loosening the flare nut on the 2-way valve approximately 45' for 3 seconds then closing it for 1 minute; repeat 3 times.

After purging the air, use a torque wrench to tighten the flare nut on the 2-way valve.

4). Check the gas leakage

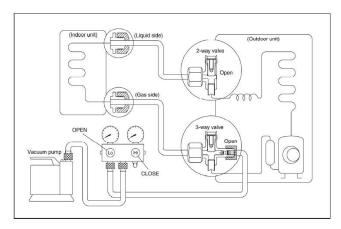
Check the flare connections for gas leakage.

5). Discharge the refrigerant.

Close the valve on the charging cylinder and discharge the refrigerant by loosening the flare nut on the 2-way valve approximately 45' until the gauge indicates 0.3 to 0.5 Mpa.

6). Disconnect the charge set and the charging cylinder, and set the 2-way and 3-way valves to the open position

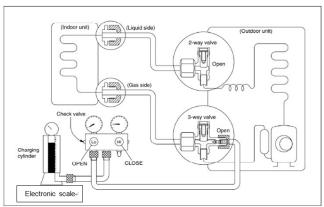
Be sure to use a hexagonal wrench to operate the valve stems.


7). Mount the valve stems nuts and the service port cap

Be sure to use a torque wrench to tighten the service port cap to a torque 18N.m.

Be sure to check the gas leakage.

5.7 Re-installation while the outdoor unit need to be repaired


1. Evacuation for the whole system

Procedure:

- 1). Confirm that both the 2-way and 3-way valves are set to the opened position.
- 2). Connect the vacuum pump to 3-way valve's service port.
- 3). Evacuation for approximately one hour. Confirm that the compound meter indicates -0.1Mpa.
- 4). Close the valve (Low side) on the charge set, turn off the vacuum pump, and confirm that the gauge needle does not move (approximately 5 minutes after turning off the vacuum pump).
- 5). Disconnect the charge hose from the vacuum pump.

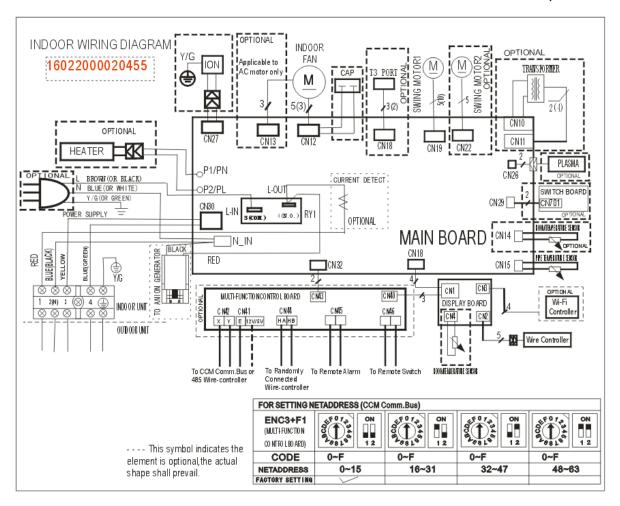
2. Refrigerant charging

Procedure:

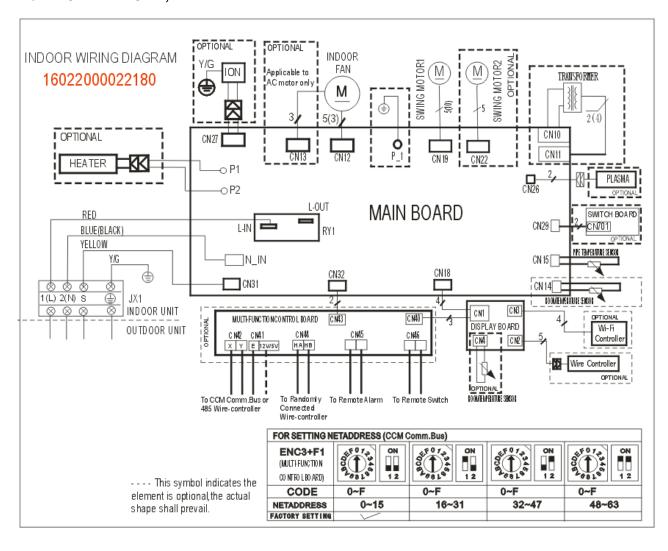
1). Connect the charge hose to the charging cylinder, open the 2-way valve and the 3-way valve

Connect the charge hose which you disconnected from the vacuum pump to the valve at the bottom of the cylinder. If the refrigerant is R410A, make the cylinder bottom up to ensure liquid charge.

- 2). Purge the air from the charge hose Open the valve at the bottom of the cylinder and press the check valve on the charge set to purge the air (be careful of the liquid refrigerant).
- 3) Put the charging cylinder onto the electronic scale and record the weight.
- 4). Open the valves (Low side) on the charge set and charge the system with liquid refrigerant If the system cannot be charge with the specified amount of refrigerant, or can be charged with a little at a time (approximately 150g each time), operating the air conditioner in the cooling cycle; however, one time is not sufficient, wait approximately 1 minute and then repeat the procedure.
- 5). When the electronic scale displays the proper weight, disconnect the charge hose from the 3-way valve's service port immediately
- If the system has been charged with liquid refrigerant while operating the air conditioner, turn off the air conditioner before disconnecting the hose.
- 6). Mounted the valve stem caps and the service port

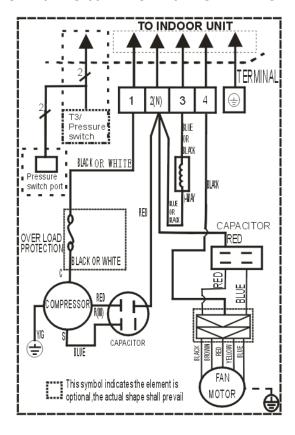

Use torque wrench to tighten the service port cap to a torque of 18N.m.

Be sure to check for gas leakage.

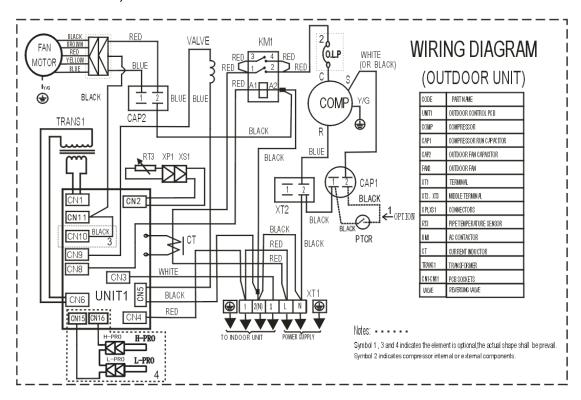

6. Wiring Diagram

6.1 Indoor Unit

For RAS-07PKH2S-EE / RAS-09PKH2S-EE / RAS-12PKH2S-EE / RAS-18PKH2S-EE,



For RAS-24PKH2S-EE,



6.2 Outdoor Unit

For RAS-07PAH2S-EE / RAS-09PAH2S-EE / RAS-12PAH2S-EE / RAS-18PAH2S-EE,

For RAS-24PAH2S-EE,

7. Operation Characteristics

Mode	Cooling operation	Heating operation	Drying operation
Temperature			
Room temperature	17℃~32℃	0°C~30°C	10℃~32℃
	(63℉~90℉)	(32°F~86°F)	(50℉~90℉)
Outdoor temperature	18℃~43℃	-7℃~24℃	11℃~43℃
	(64℉~109℉)	(19℉~75℉)	(52°F~109°F)

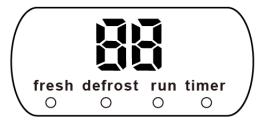
CAUTION:

- 1. If the air conditioner is used beyond the above conditions, certain safety protection features may come into operation and cause the unit to operate abnormally.
- 2. The room relative humidity should be less than 80%. If the air conditioner operates beyond this figure, the surface of the air conditioner may attract condensation. Please set the vertical air flow louver to its maximum angle (vertically to the floor), and set HIGH fan mode.
 - 3. The optimum performance will be achieved during this operating temperature zone.

8. Electronic function

8.1 Abbreviation

T1: Indoor room temperature


T2: Coil temperature of evaporator

T3: Coil temperature of condenser

T4: Outdoor ambient temperature

8.2 Display function

8.2.1 Icon explanation on indoor display board.

"fresh" when fresh feature is activated(if applicable).

"defrost" when deforsting is activated.

"run" when the unit is on.

"timer" when TIMER is set.

Digital display(for some units):

Displays the temperature settings when the air conditioner is operational.

Displays the room temperature in Fan and Drying mode.

Displays the self-diagnostic codes.

Dispalys 'On, for three seconds when Timer ON, Fresh, Swing, Turbo or Silence feature is activated.

Dispalys '**OF**, for three seconds when Timer

OFF,Fresh, Swing, Turbo or Silence feature is cancelled.

Dispalys '**JF**, under deforsting operation.

Dispalys '**L**, when anti-cold air feature is activated under heating mode.

Dispalys '**5**C' during self clean operation (if applicable).

Dispalys '**FP**', when freeze protection is turned on (if applicable).

NOTE:

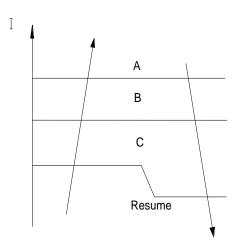
A guide on using the infrared remote is not included in this literature package.

8.3 Main Protection

8.3.1 Time Delay at restart for compressor.

Less than 1 minute delay for the 1st time start-up and 3 minutes delay for others.

8.3.2 Sensor protection at open circuit and breaking disconnection.


8.3.3 Zero crossing detection error protection

If AC cannot detect zero crossing signal for 4 minutes or the zero crossing signal time interval is not correct, the unit will stop and the LED will display the failure. The correct zero crossing signal time interval should be between 6-13ms.

8.3.4 Fan Speed is out of control

When Indoor Fan Speed is too low(lower than 300RPM) lasting 2 minutes, the unit stops and LED displays failure information and can't returns to normal operation automatically.

8.3.5 Current protection

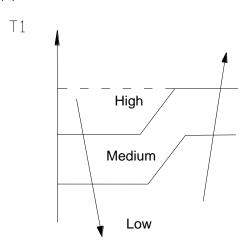
The current exceeds setting value for certain time, the compressor and outdoor fan will shut off.

8.3.6 Indoor fan delayed open function

When the unit starts up, the indoor fan will open 4s later. If the unit runs in heating mode, the indoor fan will be also controlled by anti-cold wind function.

8.3.7 Refrigerant leakage detection

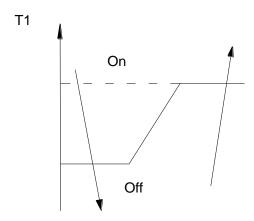
This function is only active in cooling mode. It can better prevent the compressor being damaged by refrigerant leakage or compressor overload.


Open condition:

When compressor is active, the value of the Coil temperature of evaporator T2 has no change or very little change.

8.4 Operation Modes and Functions

8.4.1 Fan mode

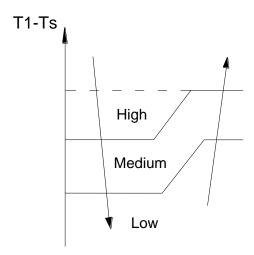

- (1) Outdoor fan and compressor stop.
- (2) Temperature setting function is disabled, and no setting temperature is displayed.
- (3) Indoor fan can be set to high/med/low/auto.
- (4) The louver operates the same as in cooling mode.
- (5) Auto fan:

8.4.2 Cooling Mode

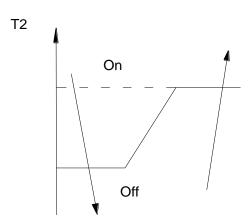
8.4.2.1 Compressor running rules

When indoor room temp.T1 is lower than setting value, the compressor and outdoor fan will shut off.

8.4.2.2 Outdoor fan running rules

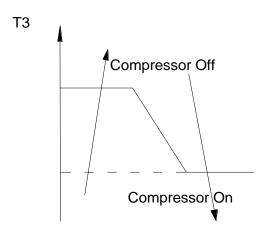

The On-off outdoor units have single fan speed. The outdoor fan will run following the compressor except when AC is in evaporator high temp. protection in heating mode ,condenser high temp. protection in cooling mode, defrosting mode and the current

protection.


8.4.2.3 Indoor fan running rules

In cooling mode, indoor fan runs all the time and the speed can be selected as high, medium, low and auto.

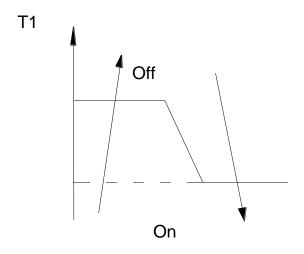
The auto fan:



8.4.2.4 Low evaporator coil temperature T2 protection

When the evaporator coil temp.T2 keeps lower than setting value, the compressor and outdoor fan will shut off.

8.4.2.5 High condenser temperature T3 protection (only for RAS-24PAH2S-EE)


When high condenser temp. T3 is more than setting value, the compressor will stop.

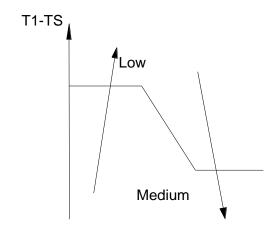
During the protection, the outdoor fan keeps working.

8.4.3 Heating Mode

8.4.3.1 Compressor running rules:

When indoor room temp.T1 is higher than setting value the compressor and outdoor fan will shut off.

8.4.3.2 Outdoor fan running rules:


The outdoor units have single fan speed. The outdoor fan will run following the compressor except when AC is in evaporator high temp. protection in heating mode, condenser high temp. protection in cooling mode, defrosting mode and the current protection.

8.4.3.3 Indoor fan running rules:

When the compressor is on, the indoor fan can

be set to high/med/low/auto. And the anti-cold wind function has the priority.

Auto fan action:

The indoor fan speed will adjust according to the value of T1-T_S.

8.4.3.4 Defrosting mode:

For

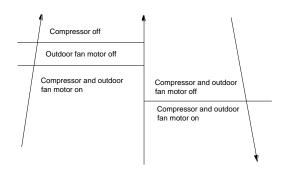
RAS-07PKH2S-EE/RAS-07PAH2S-EE RAS-09PKH2S-EE/RAS-09PAH2S-EE RAS-12PKH2S-EE/RAS-12PAH2S-EE RAS-18PKH2S-EE/RAS-18PAH2S-EE models:

AC will enter the defrosting mode according to the value of temp difference between T2 and T1, and also the compressor running time.

During the defrosting mode, the compressor keep running, indoor and outdoor motor will stop, defrost lamp of the indoor unit will be

lighted ."**JF** ." Will be displayed (for some units).

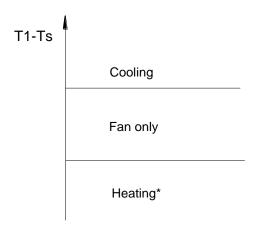
For RAS-24PKH2S-EE/RAS-24PAH2S-EE models:


AC will enter the defrosting mode according to the value of temp. of T3 and the value range of temp. change of T3 and also the compressor running time.

During the defrosting mode, the compressor keep running, indoor and outdoor motor will stop, defrost lamp of the indoor unit will be

lighted ."**JF** ." Will be displayed (for some

units).


8.4.3.5 High evaporator coil temp.T2 protection:

8.4.4 Auto-mode

This mode can be chosen with remote controller.

In auto mode, the machine will choose operation mode according to ΔT ($\Delta T = T1-Ts$).

Heating*: For cooling only models, they will run at fan speed

AC will run in auto mode in the below cases:

- (1) Pressing the forced auto button.
- (2) If AC is off, it will run in auto mode when the timer on function is active.
- (3) After setting the mode, AC will run in auto mode if the compressor keeps not running for certain time.

8.4.5 Drying mode

8.4.5.1 The compressor is cycled running with 10 minutes on and then 5 minutes off. The indoor fan will keep running at low speed.

8.4.5.2 In drying mode, if room temperature is lower than 10° C, the compressor will stop and

not resume until room temperature exceeds 13° C.

8.4.5.3 The evaporator anti-freezing protection is the same as that in cooling mode.

8.4.6 Forced operation function

Forced cooling mode:

The compressor and outdoor fan keep running and the indoor fan runs at low speed. After running for 30 minutes, AC will turn to auto mode with 24°C setting temperature.

Forced auto mode:

When AC receives signals, such as switch on, switch off, timer on, timer off, mode setting, fan speed setting, sleeping mode setting, follow me setting, it will guit the forced operation.

8.4.7 Auto-Restart function

The indoor unit is equipped with auto-restart function, which is carried out through an auto-restart module. In case of a sudden power failure, the module memorizes the setting conditions before the power failure. The unit will resume the previous operation setting (not including swing function) automatically after 3 minutes when power returns.

If AC is off before power off and AC is required to start up now, the compressor will have 1 minute delay when power on. Other conditions, the compressor will have 3 minutes delay when restarts.

8.4.8 Refrigerant Leakage Detection

With this new technology, the display area will show "EC" when the outdoor unit detects refrigerant leakage.

When compressor is active, the value of the Coil temperature of evaporator T2 has no change or very little change.

8.4.98°C Heating(optional)

When the compressor is running, the indoor fan motor will run without anti-cold air function.

When the compressor is off, the indoor fan motor is off.

8.4.10 Self clean (optional)

For heat pump models which are provided with this function, after running in cooling or drying mode, if the user press "Self Clean" button on remote controller, firstly, indoor unit runs in fan only mode for a while, then low heat operation and finally runs in fan only again. This function can keep the inside of indoor unit dry and prevent breeding of mold.

8.4.11 Follow me (optional)

- 1) If the indoor PCB receives the signal which results from pressing the FOLLOW ME button on remote controller, the buzzer will emit a sound and this indicates the follow me function is initiated. But when the indoor PCB receives signal which sent from remote controller every 3 minutes, the buzzer will not respond. When the unit is running with follow me function, the PCB will control the unit according to the temperature from follow me signal, and the temperature sensor will be shielded, but the error detective function of room temperature sensor will be still valid.
- 2) When the follow me function is available, the PCB will control the unit according to the room temperature from the remote controller and the setting temperature.
- 3) The PCB will take action to the mode change information from remote controller signal, but it will not affected by the setting temperature.
- 4) When the unit is running with follow me function, if the PCB doesn't receive any signal from remote controller for 7 minutes or pressing FOLLOW ME button again, the follow me function will be turned off automatically, and the temperature will control the unit according to

the room temperature detected from its own room temperature sensor and setting temperature.

8.4.13 Point check function (Only for Digital Display Units)

Press the LED DISPLAY or LED or MUTE button of the remote controller three times, and then press the AIR DIRECTION or SWING button three times in ten seconds, the buzzer will keep ring for two seconds. The air conditioner will enter into the information enquiry status. You can press the LED DISPLAY or AIR DIRECTION button to check the next or front item's information within 27 seconds. When the AC enter the "information enquiry" status, it will display the code name in 2 seconds, the details are as follows.

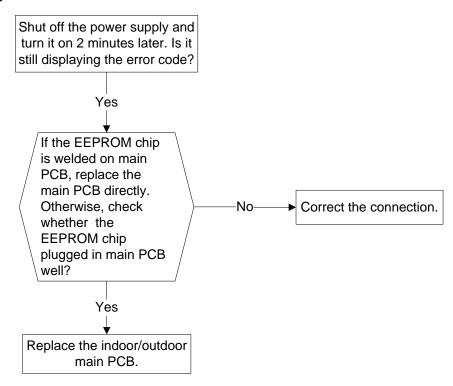
Enquiry information	Displaying code	Meaning
T1	T1	T1 temp.
T2	T2	T2 temp.
T3	Т3	T3 temp.
T4	T4	T4 temp.

When the AC enter into the information enquiry status, it will display the code value in the next 25s, the details are as follows.

Enquiry	Display value	Meaning	Remark
information			
T1,T2,T3,T4,	-14—70	-14—70	1. All the displaying temperature is actual
			value.
			2. All the temperature is °C no matter what
			kind of remote controller is used.
			3. If the actual value exceeds the range, it
			will display the maximum value or minimum
			value.

9. Troubleshooting

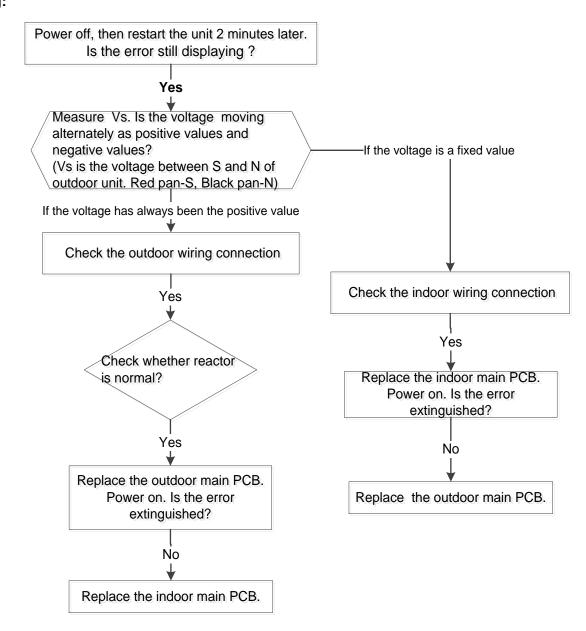
9.1 Indoor Unit Error Display


Operation lamp	Timer lamp	Display	LED STATUS
☆ 1 time	Х	E0	EEPROM parameter error
☆ 2 times	X	E1	Indoor / outdoor units communication error(only for RAS-24PKH2S-EE/RAS-24PAH2S-EE)
☆ 3 times	Х	E2	Zero-crossing signal detection error
☆ 4 times	Х	E3	Indoor fan speed has been out of control
☆ 5 times	Х	E4	Indoor room temperature sensor T1 open circuit or short circuit
☆ 6 times	Х	E5	Evaporator coil temperature sensor T2 open circuit or short circuit
☆ 9 times	Х	E7	Indoor PCB /Display board communication error
☆ 7 times	Х	EC	Refrigerant Leakage Detection
☆3 times	0	F2	Condenser coil temperature sensor T3 or T4 open circuit or short circuit(only for RAS-24PKH2S-EE/RAS-24PAH2S-EE)

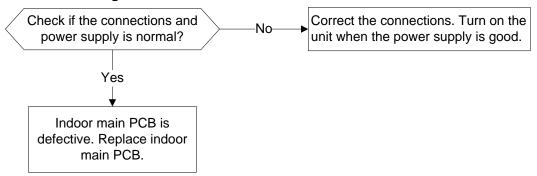
9.2 Diagnosis and Solution

9.2.1 EEPROM parameter error diagnosis and solution(E0)

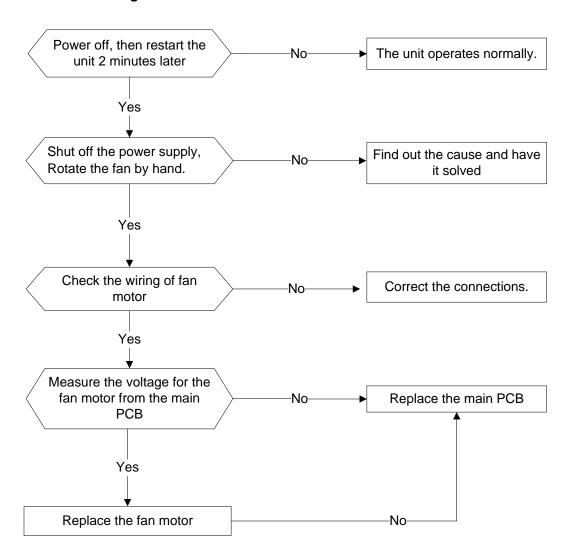
Error Code	E0
Malfunction decision conditions	Indoor or outdoor PCB main chip does not receive feedback from EEPROM chip.
Supposed causes	Installation mistakePCB faulty


Trouble shooting:

EEPROM: a read-only memory whose contents can be erased and reprogrammed using a pulsed voltage.

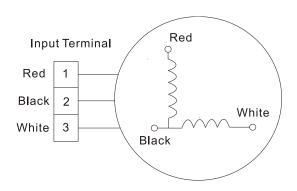

9.2.2 Indoor / outdoor unit's communication diagnosis and solution (E1)

Error Code	E1					
Malfunction decision conditions	Indoor unit does not receive the feedback from outdoor unit during 120 seconds.					
Supposed causes	Wiring mistake Indoor or outdoor PCB faulty					

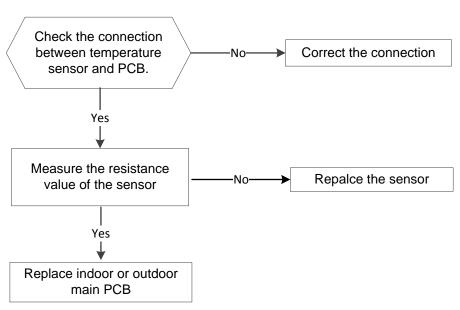

9.2.3 Zero crossing detection error diagnosis and solution(E2)

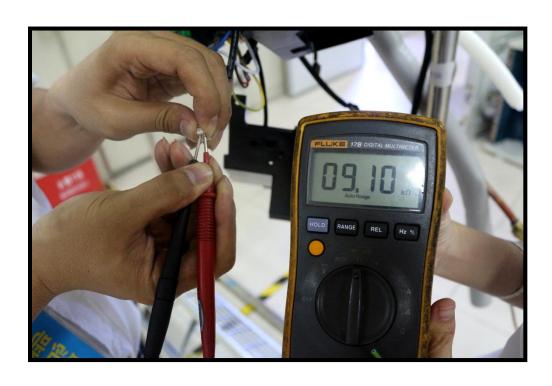
Error Code	E2
Malfunction decision conditions	When PCB does not receive zero crossing signal feedback for 4 minutes or the zero crossing signal time interval is abnormal.
Supposed causes	Connection mistake PCB faulty

9.2.4 Fan speed has been out of control diagnosis and solution(E3)

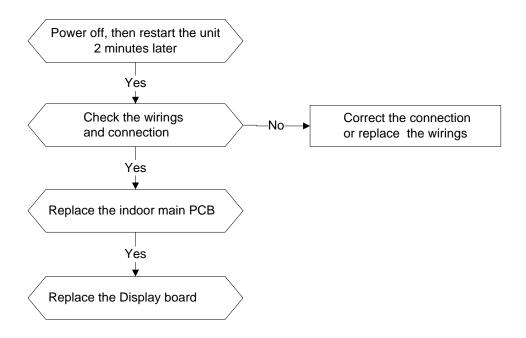

Error Code	E3					
Malfunction decision	When indoor fan speed keeps too low (300RPM) for certain time,					
conditions	the unit will stop and the LED will display the failure.					
Supposed causes	Wiring mistake					
	Fan ass'y faulty					
	Fan motor faulty					
	PCB faulty					

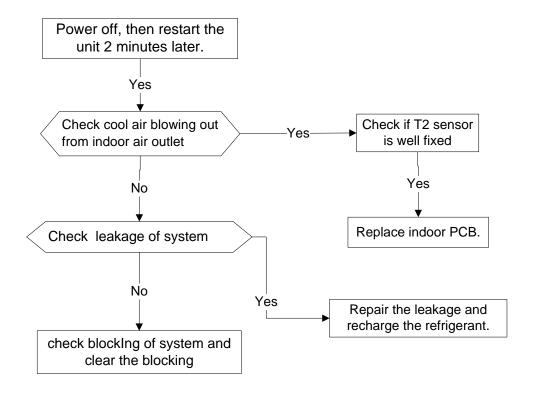
Index1:


1: Indoor AC Fan Motor


Power on and set the unit running in fan mode at high fan speed. After running for 15 seconds, measure the voltage of pin1 and pin2. If the value of the voltage is less than 100V(208~240V power supply) or 50V(115V power supply), the PCB must has problems and need to be replaced.

9.2.5 Open circuit or short circuit of temperature sensor diagnosis and solution (E4)


Error Code	E4/E5/F2						
Malfunction decision conditions	If the sampling voltage is lower than 0.06V or higher than 4.94V, the LED will display the failure.						
Supposed causes	 Wiring mistake Sensor faulty PCB faulty 						


9.2.6 Indoor PCB /Display board communication error (E7)

Error Code	E7
Malfunction decision conditions	Indoor PCB does not receive feedback from Display board.
Supposed causes	 Wiring mistake PCB faulty Display board malfunction

9.2.7 Refrigerant Leakage Detection diagnosis and solution(EC)

Error Code	EC
Malfunction decision conditions	Define the evaporator coil temp.T2 of the compressor just starts running as Tcool. In the beginning 5 minutes after the compressor starts up, if T2 <tcool−2℃ "ec"="" 3="" 4="" ac="" and="" area="" continuous="" display="" does="" happens="" keep="" not="" off.<="" seconds="" show="" situation="" td="" the="" this="" times,="" turn="" will=""></tcool−2℃>
Supposed causes	 T2 sensor faulty Indoor PCB faulty System problems, such as leakage or blocking.

Main parts check

1.Temperature sensor checking

Disconnect the temperature sensor from PCB, measure the resistance value with a tester.

Tester

Temperature Sensors.

Room temp.(T1) sensor,

Indoor coil temp.(T2) sensor,

Outdoor coil temp.(T3) sensor,

Outdoor ambient temp.(T4) sensor,

 $\label{lem:meter$

Appendix 1 Temperature Sensor Resistance Value Table for T1,T2,T3,T4 (°C--K)

CC °F K Ohm °C °F K Ohm °C °F K Ohm °C °F K Ohm 20 -4 115266 20 68 126431 60 140 2.35774 100 212 0.62973 19 -2 108.146 21 70 12.0561 61 142 2.27249 101 214 0.621148 -18 0 101.517 22 72 11.5 62 144 2.19073 102 216 0.59386 -16 3 89.5865 24 75 10.730 66 147 2.03732 104 219 0.56038 -15 5 84.219 25 77 10 66 147 2.9372 106 221 0.54448 -14 7 79.311 26 79 9.55074 66 151 1.89627 106 223 0.52122 -11 12 66.0881 27			T	1		arioo valao			2,13,17(0			1
1-19	°C	°F	K Ohm	°C	°F	K Ohm	°C	°F	K Ohm	°C	°F	K Ohm
-18 0 101.517 22 72 11.5 62 144 2.19073 102 216 0.59386 -17 1 96.3423 23 73 10.9731 63 145 2.11241 103 217 0.57683 -16 5 84.219 25 77 10 65 149 1.96532 105 221 0.54448 -16 5 84.219 25 77 10 65 149 1.96532 105 221 0.54648 -14 7 79.311 26 79 9.55074 66 151 1.89627 106 223 0.52912 -13 9 74.536 27 81 9.12445 67 153 1.83003 107 225 0.51426 -11 12 60.0898 29 84 8.33666 69 156 1.70547 109 228 0.486 -10 14 62.2756 3	-20	-4	115.266	20	68	12.6431	60	140	2.35774	100	212	0.62973
-17 1 96.3423 23 73 10.97311 63 145 2.11241 103 217 0.57683 -16 3 89.5865 24 75 10.4736 64 147 2.03732 104 219 0.56038 -15 5 84.219 25 77 10 65 149 1.96532 105 221 0.54448 -14 7 79.311 26 79 9.56074 66 151 1.89627 106 223 0.52912 -13 9 74.536 27 81 9.12445 67 153 1.83033 107 225 0.54426 -12 10 70.1698 28 82 8.71983 68 154 1.76647 108 226 0.49899 -11 12 66.0898 29 84 8.33566 69 156 1.70547 109 228 0.486 -10 14 62.2756	-19	-2	108.146	21	70	12.0561	61	142	2.27249	101	214	0.61148
-16 3 89.5865 24 75 10.4736 64 147 2.03732 104 219 0.56038 -15 5 84.219 25 77 10 65 149 1.96532 105 221 0.54448 -14 7 79.311 26 79 9.55074 66 151 1.89627 106 223 0.52912 -13 9 74.536 27 81 9.12445 67 153 1.83003 107 225 0.51448 -12 10 70.1698 28 82 8.71983 66 156 1.70547 109 228 0.486 -10 14 62.2756 30 86 7.97078 70 158 1.64691 110 230 0.47256 -9 16 58.7079 31 88 7.62411 71 160 1.59068 111 232 0.45957 -8 18 56.5694	-18	0	101.517	22	72	11.5	62	144	2.19073	102	216	0.59386
-15 5 84.219 25 77 10 65 149 1.96532 105 221 0.54448 -14 7 79.311 26 79 9.55074 66 151 1.89627 106 223 0.52912 -13 9 74.536 27 81 9.12445 67 153 1.83003 107 225 0.51426 -12 10 70.1698 28 82 8.71983 68 154 1.76647 108 226 0.4986 -10 14 62.2756 30 86 7.97078 70 158 1.64681 110 230 0.47256 -9 16 58.7079 31 88 7.62411 71 160 1.59068 111 232 0.45957 -8 18 56.3694 32 90 7.29464 72 162 1.53668 112 234 0.44699 -7 19 52.2438	-17	1	96.3423	23	73	10.9731	63	145	2.11241	103	217	0.57683
-144 7 79.311 26 79 9.55074 66 151 1.89627 106 223 0.52912 -13 9 74.536 27 81 9.12445 67 153 1.83003 107 225 0.51426 -12 10 70.1698 28 82 8.71983 68 154 1.76647 109 228 0.48999 -11 12 66.0898 29 84 8.33566 69 156 1.70547 109 228 0.48989 -10 14 62.2756 30 86 7.97078 70 158 1.64691 110 230 0.47256 -9 16 658.7079 31 88 7.62411 71 160 1.59668 111 232 0.45957 -8 18 56.3694 32 90 7.29464 72 162 1.53668 112 234 0.44699 -7 19 52.243	-16	3	89.5865	24	75	10.4736	64	147	2.03732	104	219	0.56038
-13 9 74.536 27 81 9.12445 67 153 1.83003 107 225 0.51426 -12 10 70.1698 28 82 8.71983 68 154 1.76647 108 226 0.49989 -11 12 66.0898 29 84 8.33566 69 156 1.70547 109 228 0.486 -10 14 62.2756 30 86 7.97078 70 158 1.64891 110 230 0.47256 -9 16 58.7079 31 88 7.62411 71 160 1.59068 111 232 0.45957 -8 18 56.3694 32 90 7.29464 72 162 1.53668 112 234 0.44692 -7 19 52.2438 33 91 6.9355 74 165 1.43498 114 237 0.42304 -5 23 46.5725 <td>-15</td> <td>5</td> <td>84.219</td> <td>25</td> <td>77</td> <td>10</td> <td>65</td> <td>149</td> <td>1.96532</td> <td>105</td> <td>221</td> <td>0.54448</td>	-15	5	84.219	25	77	10	65	149	1.96532	105	221	0.54448
-12 10 70.1698 28 82 8.71983 68 154 1.76647 108 226 0.49989 -11 12 66.0898 29 84 8.33566 69 156 1.70547 109 228 0.486 -10 14 62.2756 30 86 7.97078 70 158 1.64891 110 230 0.47256 -9 16 58.7079 31 88 7.62411 71 160 1.59068 111 232 0.47256 -8 18 56.3694 32 90 7.29464 72 162 1.53668 112 234 0.44699 -7 19 52.2438 33 91 6.98142 73 163 1.48481 113 235 0.43482 -6 21 49.3161 34 93 6.63055 74 167 1.38703 115 239 0.41164 -4 25 44	-14	7	79.311	26	79	9.55074	66	151	1.89627	106	223	0.52912
-11 12 66.0898 29 84 8.33566 69 156 1.70547 109 228 0.486 -10 14 62.2756 30 86 7.97078 70 158 1.64691 110 230 0.47256 -9 16 58.7079 31 88 7.62411 71 160 1.59068 111 232 0.45957 -8 18 56.3694 32 90 7.29464 72 162 1.53668 112 234 0.44699 -7 19 52.2438 33 91 6.98142 73 163 1.48481 113 235 0.43482 -6 21 49.3161 34 93 6.68355 74 165 1.43498 114 237 0.42304 -5 23 46.5725 35 95 6.40021 75 167 1.38703 115 237 0.41606 -3 27 41.5878 </td <td>-13</td> <td>9</td> <td>74.536</td> <td>27</td> <td>81</td> <td>9.12445</td> <td>67</td> <td>153</td> <td>1.83003</td> <td>107</td> <td>225</td> <td>0.51426</td>	-13	9	74.536	27	81	9.12445	67	153	1.83003	107	225	0.51426
-10 14 62.2756 30 86 7.97078 70 158 1.64691 110 230 0.47256 -9 16 58.7079 31 88 7.62411 71 160 1.59068 111 232 0.45957 -8 18 56.3694 32 90 7.29464 72 162 1.53668 111 234 0.44699 -7 19 52.2438 33 91 6.98142 73 163 1.48481 113 235 0.43482 -6 21 49.3161 34 93 6.68355 74 165 1.43498 114 237 0.42304 -5 23 46.5725 35 95 6.40021 75 167 1.38703 115 239 0.41164 -4 25 44 36 97 6.13059 76 169 1.34105 116 241 0.4006 -3 27 41.5878	-12	10	70.1698	28	82	8.71983	68	154	1.76647	108	226	0.49989
-9 16 58.7079 31 88 7.62411 71 160 1.59068 111 232 0.45957 -8 18 56.3694 32 90 7.29464 72 162 1.53668 112 234 0.44699 -7 19 52.2438 33 91 6.98142 73 163 1.48481 113 235 0.43482 -6 21 49.3161 34 93 6.68355 74 165 1.43498 114 237 0.42304 -5 23 46.5725 35 95 6.40021 75 167 1.38703 115 239 0.41164 -4 25 44 36 97 6.13059 76 169 1.34105 116 241 0.4006 -3 27 41.5878 37 99 5.87359 77 171 1.29078 117 243 0.33991 -2 28 39.8239	-11	12	66.0898	29	84	8.33566	69	156	1.70547	109	228	0.486
-8 18 56.3694 32 90 7.29464 72 162 1.53668 112 234 0.44699 -7 19 52.2438 33 91 6.98142 73 163 1.48481 113 235 0.43482 -6 21 49.3161 34 93 6.68355 74 165 1.43498 114 237 0.42304 -5 23 46.5725 35 95 6.40021 75 167 1.38703 115 239 0.41164 -4 25 44 36 97 6.13059 76 169 1.34105 116 241 0.4006 -3 27 41.5878 37 99 5.87359 77 171 1.29078 117 243 0.38991 -2 28 39.8239 38 100 5.62961 78 172 1.25423 118 244 0.37956 -1 30 37.1988	-10	14	62.2756	30	86	7.97078	70	158	1.64691	110	230	0.47256
-7 19 52,2438 33 91 6,98142 73 163 1,48481 113 235 0,43482 -6 21 49,3161 34 93 6,68355 74 165 1,43498 114 237 0,42304 -5 23 46,5725 35 95 6,40021 75 167 1,38703 115 239 0,41164 -4 25 44 36 97 6,13059 76 169 1,34105 116 241 0,4006 -3 27 41,5878 37 99 5,87359 77 171 1,29078 117 243 0,38991 -2 28 39,8239 38 100 5,62961 78 172 1,25423 118 244 0,37956 -1 30 37,1988 39 102 5,39689 79 174 1,2133 119 246 0,36954 0 32 35,2024	-9	16	58.7079	31	88	7.62411	71	160	1.59068	111	232	0.45957
-6 21 49,3161 34 93 6.68355 74 165 1.43498 114 237 0.42304 -5 23 46.5725 35 95 6.40021 75 167 1.38703 115 239 0.41164 -4 25 44 36 97 6.13059 76 169 1.34105 116 241 0.4006 -3 27 41.5878 37 99 5.87359 77 171 1.29078 117 243 0.38991 -2 28 39.8239 38 100 5.62961 78 172 1.25423 118 244 0.37956 -1 30 37.1988 39 102 5.39689 79 174 1.2133 119 246 0.36954 0 32 35.2024 40 104 5.17519 80 176 1.17393 120 248 0.35982 1 34 33.3269	-8	18	56.3694	32	90	7.29464	72	162	1.53668	112	234	0.44699
-5 23 46.5725 35 95 6.40021 75 167 1.38703 115 239 0.41164 -4 25 44 36 97 6.13059 76 169 1.34105 116 241 0.4006 -3 27 41.5878 37 99 5.87359 77 171 1.29078 117 243 0.38991 -2 28 39.8239 38 100 5.62961 78 172 1.25423 118 244 0.37956 -1 30 37.1988 39 102 5.39689 79 174 1.2133 119 246 0.36954 0 32 35.2024 40 104 5.17519 80 176 1.17393 120 248 0.35982 1 34 33.3269 41 106 4.96392 81 178 1.13604 121 250 0.35042 2 36 31.5635	-7	19	52.2438	33	91	6.98142	73	163	1.48481	113	235	0.43482
-4 25 44 36 97 6.13059 76 169 1.34105 116 241 0.4006 -3 27 41.5878 37 99 5.87359 77 171 1.29078 117 243 0.38991 -2 28 39.8239 38 100 5.62961 78 172 1.25423 118 244 0.37956 -1 30 37.1988 39 102 5.39689 79 174 1.2133 119 246 0.36954 0 32 35.2024 40 104 5.17519 80 176 1.17393 120 248 0.35982 1 34 33.3269 41 106 4.96392 81 178 1.13604 121 250 0.35042 2 36 31.5635 42 108 4.76253 82 180 1.09958 122 252 0.3413 3 37 29.9058	-6	21	49.3161	34	93	6.68355	74	165	1.43498	114	237	0.42304
-3 27 41.5878 37 99 5.87359 77 171 1.29078 117 243 0.38991 -2 28 39.8239 38 100 5.62961 78 172 1.25423 118 244 0.37956 -1 30 37.1988 39 102 5.39689 79 174 1.2133 119 246 0.36954 0 32 35.2024 40 104 5.17519 80 176 1.17393 120 248 0.35982 1 34 33.3269 41 106 4.96392 81 178 1.13604 121 250 0.35042 2 36 31.5635 42 108 4.76253 82 180 1.09958 122 252 0.3413 3 37 29.9058 43 109 4.5705 83 181 1.06448 122 252 0.3413 3 37 29.9058	-5	23	46.5725	35	95	6.40021	75	167	1.38703	115	239	0.41164
-2 28 39.8239 38 100 5.62961 78 172 1.25423 118 244 0.37956 -1 30 37.1988 39 102 5.39689 79 174 1.2133 119 246 0.36954 0 32 35.2024 40 104 5.17519 80 176 1.17393 120 248 0.35982 1 34 33.3269 41 106 4.96392 81 178 1.13604 121 250 0.35042 2 36 31.5635 42 108 4.76253 82 180 1.09958 122 252 0.3413 3 37 29.9058 43 109 4.5705 83 181 1.06448 123 253 0.33246 4 39 28.3459 44 111 4.38736 84 183 1.03069 124 255 0.3239 5 41 26.8778	-4	25	44	36	97	6.13059	76	169	1.34105	116	241	0.4006
-1 30 37.1988 39 102 5.39689 79 174 1.2133 119 246 0.36954 0 32 35.2024 40 104 5.17519 80 176 1.17393 120 248 0.35982 1 34 33.3269 41 106 4.96392 81 178 1.13604 121 250 0.35042 2 36 31.5635 42 108 4.76253 82 180 1.09958 122 252 0.3413 3 37 29.9058 43 109 4.5705 83 181 1.06448 123 253 0.33246 4 39 28.3459 44 111 4.38736 84 183 1.03069 124 255 0.3239 5 41 26.8778 45 113 4.21263 85 185 0.99815 125 257 0.31559 6 43 25.4954	-3	27	41.5878	37	99	5.87359	77	171	1.29078	117	243	0.38991
0 32 35.2024 40 104 5.17519 80 176 1.17393 120 248 0.35982 1 34 33.3269 41 106 4.96392 81 178 1.13604 121 250 0.35042 2 36 31.5635 42 108 4.76253 82 180 1.09958 122 252 0.3413 3 37 29.9058 43 109 4.5705 83 181 1.06448 123 253 0.3239 5 41 26.8778 45 113 4.21263 85 185 0.99815 125 257 0.31559 6 43 25.4954 46 115 4.04589 86 187 0.96681 126 259 0.30754 7 45 24.1932 47 117 3.88673 87 189 0.93662 127 261 0.29974 8 46 22.5662	-2	28	39.8239	38	100	5.62961	78	172	1.25423	118	244	0.37956
1 34 33.3269 41 106 4.96392 81 178 1.13604 121 250 0.35042 2 36 31.5635 42 108 4.76253 82 180 1.09958 122 252 0.3413 3 37 29.9058 43 109 4.5705 83 181 1.06448 123 253 0.33246 4 39 28.3459 44 111 4.38736 84 183 1.03069 124 255 0.3239 5 41 26.8778 45 113 4.21263 85 185 0.99815 125 257 0.31559 6 43 25.4954 46 115 4.04589 86 187 0.96681 126 259 0.30754 7 45 24.1932 47 117 3.88673 87 189 0.93662 127 261 0.29974 8 46 22.5662	-1	30	37.1988	39	102	5.39689	79	174	1.2133	119	246	0.36954
2 36 31.5635 42 108 4.76253 82 180 1.09958 122 252 0.3413 3 37 29.9058 43 109 4.5705 83 181 1.06448 123 253 0.33246 4 39 28.3459 44 111 4.38736 84 183 1.03069 124 255 0.3239 5 41 26.8778 45 113 4.21263 85 185 0.99815 125 257 0.31559 6 43 25.4954 46 115 4.04589 86 187 0.96681 126 259 0.30754 7 45 24.1932 47 117 3.88673 87 189 0.93662 127 261 0.29974 8 46 22.5662 48 118 3.73476 88 190 0.90753 128 262 0.29216 9 48 21.8094	0	32	35.2024	40	104	5.17519	80	176	1.17393	120	248	0.35982
3 37 29.9058 43 109 4.5705 83 181 1.06448 123 253 0.33246 4 39 28.3459 44 111 4.38736 84 183 1.03069 124 255 0.3239 5 41 26.8778 45 113 4.21263 85 185 0.99815 125 257 0.31559 6 43 25.4954 46 115 4.04589 86 187 0.96681 126 259 0.30754 7 45 24.1932 47 117 3.88673 87 189 0.93662 127 261 0.29974 8 46 22.5662 48 118 3.73476 88 190 0.90753 128 262 0.29216 9 48 21.8094 49 120 3.58962 89 192 0.8795 129 264 0.28482 10 50 20.7184	1	34	33.3269	41	106	4.96392	81	178	1.13604	121	250	0.35042
4 39 28.3459 44 111 4.38736 84 183 1.03069 124 255 0.3239 5 41 26.8778 45 113 4.21263 85 185 0.99815 125 257 0.31559 6 43 25.4954 46 115 4.04589 86 187 0.96681 126 259 0.30754 7 45 24.1932 47 117 3.88673 87 189 0.93662 127 261 0.29974 8 46 22.5662 48 118 3.73476 88 190 0.90753 128 262 0.29216 9 48 21.8094 49 120 3.58962 89 192 0.8795 129 264 0.28482 10 50 20.7184 50 122 3.45097 90 194 0.85248 130 266 0.2777 11 52 19.6891 <td>2</td> <td>36</td> <td>31.5635</td> <td>42</td> <td>108</td> <td>4.76253</td> <td>82</td> <td>180</td> <td>1.09958</td> <td>122</td> <td>252</td> <td>0.3413</td>	2	36	31.5635	42	108	4.76253	82	180	1.09958	122	252	0.3413
5 41 26.8778 45 113 4.21263 85 185 0.99815 125 257 0.31559 6 43 25.4954 46 115 4.04589 86 187 0.96681 126 259 0.30754 7 45 24.1932 47 117 3.88673 87 189 0.93662 127 261 0.29974 8 46 22.5662 48 118 3.73476 88 190 0.90753 128 262 0.29216 9 48 21.8094 49 120 3.58962 89 192 0.8795 129 264 0.28482 10 50 20.7184 50 122 3.45097 90 194 0.85248 130 266 0.2777 11 52 19.6891 51 124 3.31847 91 196 0.82643 131 268 0.27078 12 54 18.7177 </td <td>3</td> <td>37</td> <td>29.9058</td> <td>43</td> <td>109</td> <td>4.5705</td> <td>83</td> <td>181</td> <td>1.06448</td> <td>123</td> <td>253</td> <td>0.33246</td>	3	37	29.9058	43	109	4.5705	83	181	1.06448	123	253	0.33246
6 43 25.4954 46 115 4.04589 86 187 0.96681 126 259 0.30754 7 45 24.1932 47 117 3.88673 87 189 0.93662 127 261 0.29974 8 46 22.5662 48 118 3.73476 88 190 0.90753 128 262 0.29216 9 48 21.8094 49 120 3.58962 89 192 0.8795 129 264 0.28482 10 50 20.7184 50 122 3.45097 90 194 0.85248 130 266 0.2777 11 52 19.6891 51 124 3.31847 91 196 0.82643 131 268 0.27078 12 54 18.7177 52 126 3.19183 92 198 0.80132 132 270 0.26408 13 55 17.8005<	4	39	28.3459	44	111	4.38736	84	183	1.03069	124	255	0.3239
7 45 24.1932 47 117 3.88673 87 189 0.93662 127 261 0.29974 8 46 22.5662 48 118 3.73476 88 190 0.90753 128 262 0.29216 9 48 21.8094 49 120 3.58962 89 192 0.8795 129 264 0.28482 10 50 20.7184 50 122 3.45097 90 194 0.85248 130 266 0.2777 11 52 19.6891 51 124 3.31847 91 196 0.82643 131 268 0.27078 12 54 18.7177 52 126 3.19183 92 198 0.80132 132 270 0.26408 13 55 17.8005 53 127 3.07075 93 199 0.77709 133 271 0.25757 14 57 16.9341	5	41	26.8778	45	113	4.21263	85	185	0.99815	125	257	0.31559
8 46 22.5662 48 118 3.73476 88 190 0.90753 128 262 0.29216 9 48 21.8094 49 120 3.58962 89 192 0.8795 129 264 0.28482 10 50 20.7184 50 122 3.45097 90 194 0.85248 130 266 0.2777 11 52 19.6891 51 124 3.31847 91 196 0.82643 131 268 0.27078 12 54 18.7177 52 126 3.19183 92 198 0.80132 132 270 0.26408 13 55 17.8005 53 127 3.07075 93 199 0.77709 133 271 0.25757 14 57 16.9341 54 129 2.95896 94 201 0.75373 134 273 0.25125 15 59 16.1156 55 131 2.84421 95 203 0.73119 135 275	6	43	25.4954	46	115	4.04589	86	187	0.96681	126	259	0.30754
9 48 21.8094 49 120 3.58962 89 192 0.8795 129 264 0.28482 10 50 20.7184 50 122 3.45097 90 194 0.85248 130 266 0.2777 11 52 19.6891 51 124 3.31847 91 196 0.82643 131 268 0.27078 12 54 18.7177 52 126 3.19183 92 198 0.80132 132 270 0.26408 13 55 17.8005 53 127 3.07075 93 199 0.77709 133 271 0.25757 14 57 16.9341 54 129 2.95896 94 201 0.75373 134 273 0.25125 15 59 16.1156 55 131 2.84421 95 203 0.73119 135 275 0.24512 16 61 15.3418 56 133 2.73823 96 205 0.70944 136 277 <td>7</td> <td>45</td> <td>24.1932</td> <td>47</td> <td>117</td> <td>3.88673</td> <td>87</td> <td>189</td> <td>0.93662</td> <td>127</td> <td>261</td> <td>0.29974</td>	7	45	24.1932	47	117	3.88673	87	189	0.93662	127	261	0.29974
10 50 20.7184 50 122 3.45097 90 194 0.85248 130 266 0.2777 11 52 19.6891 51 124 3.31847 91 196 0.82643 131 268 0.27078 12 54 18.7177 52 126 3.19183 92 198 0.80132 132 270 0.26408 13 55 17.8005 53 127 3.07075 93 199 0.77709 133 271 0.25757 14 57 16.9341 54 129 2.95896 94 201 0.75373 134 273 0.25125 15 59 16.1156 55 131 2.84421 95 203 0.73119 135 275 0.24512 16 61 15.3418 56 133 2.73823 96 205 0.70944 136 277 0.23916 17 63 14.	8	46	22.5662	48	118	3.73476	88	190	0.90753	128	262	0.29216
11 52 19.6891 51 124 3.31847 91 196 0.82643 131 268 0.27078 12 54 18.7177 52 126 3.19183 92 198 0.80132 132 270 0.26408 13 55 17.8005 53 127 3.07075 93 199 0.77709 133 271 0.25757 14 57 16.9341 54 129 2.95896 94 201 0.75373 134 273 0.25125 15 59 16.1156 55 131 2.84421 95 203 0.73119 135 275 0.24512 16 61 15.3418 56 133 2.73823 96 205 0.70944 136 277 0.23916 17 63 14.6181 57 135 2.63682 97 207 0.68844 137 279 0.23338 18 64 13.918 58 136 2.53973 98 208 0.66818 138 280 0.22776	9	48	21.8094	49	120	3.58962	89	192	0.8795	129	264	0.28482
12 54 18.7177 52 126 3.19183 92 198 0.80132 132 270 0.26408 13 55 17.8005 53 127 3.07075 93 199 0.77709 133 271 0.25757 14 57 16.9341 54 129 2.95896 94 201 0.75373 134 273 0.25125 15 59 16.1156 55 131 2.84421 95 203 0.73119 135 275 0.24512 16 61 15.3418 56 133 2.73823 96 205 0.70944 136 277 0.23916 17 63 14.6181 57 135 2.63682 97 207 0.68844 137 279 0.23338 18 64 13.918 58 136 2.53973 98 208 0.66818 138 280 0.22776	10	50	20.7184	50	122	3.45097	90	194	0.85248	130	266	0.2777
13 55 17.8005 53 127 3.07075 93 199 0.77709 133 271 0.25757 14 57 16.9341 54 129 2.95896 94 201 0.75373 134 273 0.25125 15 59 16.1156 55 131 2.84421 95 203 0.73119 135 275 0.24512 16 61 15.3418 56 133 2.73823 96 205 0.70944 136 277 0.23916 17 63 14.6181 57 135 2.63682 97 207 0.68844 137 279 0.23338 18 64 13.918 58 136 2.53973 98 208 0.66818 138 280 0.22776	11	52	19.6891	51	124	3.31847	91	196	0.82643	131	268	0.27078
14 57 16.9341 54 129 2.95896 94 201 0.75373 134 273 0.25125 15 59 16.1156 55 131 2.84421 95 203 0.73119 135 275 0.24512 16 61 15.3418 56 133 2.73823 96 205 0.70944 136 277 0.23916 17 63 14.6181 57 135 2.63682 97 207 0.68844 137 279 0.23338 18 64 13.918 58 136 2.53973 98 208 0.66818 138 280 0.22776	12	54	18.7177	52	126	3.19183	92	198	0.80132	132	270	0.26408
15 59 16.1156 55 131 2.84421 95 203 0.73119 135 275 0.24512 16 61 15.3418 56 133 2.73823 96 205 0.70944 136 277 0.23916 17 63 14.6181 57 135 2.63682 97 207 0.68844 137 279 0.23338 18 64 13.918 58 136 2.53973 98 208 0.66818 138 280 0.22776	13	55	17.8005	53	127	3.07075	93	199	0.77709	133	271	0.25757
16 61 15.3418 56 133 2.73823 96 205 0.70944 136 277 0.23916 17 63 14.6181 57 135 2.63682 97 207 0.68844 137 279 0.23338 18 64 13.918 58 136 2.53973 98 208 0.66818 138 280 0.22776	14	57	16.9341	54	129	2.95896	94	201	0.75373	134	273	0.25125
17 63 14.6181 57 135 2.63682 97 207 0.68844 137 279 0.23338 18 64 13.918 58 136 2.53973 98 208 0.66818 138 280 0.22776	15	59	16.1156	55	131	2.84421	95	203	0.73119	135	275	0.24512
18 64 13.918 58 136 2.53973 98 208 0.66818 138 280 0.22776	16	61	15.3418	56	133	2.73823	96	205	0.70944	136	277	0.23916
	17	63	14.6181	57	135	2.63682	97	207	0.68844	137	279	0.23338
19 66 13.2631 59 138 2.44677 99 210 0.64862 139 282 0.22231	18	64	13.918	58	136	2.53973	98	208	0.66818	138	280	0.22776
	19	66	13.2631	59	138	2.44677	99	210	0.64862	139	282	0.22231