

KLIC-DI COMMERCIAL

ИНТЕРФЕЙС КNX – КОММЕРЧЕСКИЙ КОНДИЦИОНЕР

ZN1CL-KLIC-DI

Редакция 8 Версия 1.6

Содержание

1.	Вве	дение	3
2.	Инс	талляция	5
2.	1.	Инсталляция KLIC-DI	5
2.	2.	Описание элементов	6
3.	Кон	фигурация	8
3.	1.	Основные функции управления	8
3.	2.	Расширенные функции	8
4.	Пар	аметризация	12
4.	1.	Конфигурация по умолчанию	12
4.	2.	Общие параметры	14
4.	3.	Режим	14
4.	4.	Скорость вентилятора	15
4.	5.	Сцены	16
4.	6.	Ограничение температуры	17
4.	7.	Автоматическое выключение	18
4.	8.	Обработка ошибок	19
4.	9.	Параметры инициализации	19
ΠPI	ило	ЖЕНИЕ І. КОММУНИКАЦИОННЫЕ ОБЪЕКТЫ	21
ПРИ	ило	ЖЕНИЕ II. КОДЫ ОШИБОК КОНДИЦИОНЕРА	23

2

1. ВВЕДЕНИЕ

KLIC-DI - интерфейс, обеспечивающий двунаправленную передачу данных между системой автоматизации KNX и кондиционерами коммерческих серий.

Благодаря двунаправленной коммуникации кондиционер может управляться так же, как ИК пультом дистанционного управления, при этом контролируется и передается в систему KNX статус кондиционера для его мониторинга.

Рисунок 1.1 KLIC-DI

При подключении проводного пульта управления вместе с KLIC-DI на одну и ту же шину управления кондиционера, KLIC-DI будет взаимодействовать с пультом. При этом одно из устройств будет ведущим (master), а другое ведомым (slave). Важно убедиться, что интерфейс KLIC-DI и проводной пульт сконфигурированы в разных режимах. В этом случае ведомое устройство будет менять свой статус в соответствии с командами ведущего (мастера), а также будет передавать свой статус в случае его изменения в результате собственного процесса управления.

Характеристики прибора:

- Маленький корпус: 90 х 60 х 35 мм (2 DIN единицы).
- Устанавливается в монтажных коробках или электрических щитках. Прибор должен устанавливаться вне внутреннего блока кондиционера.
- КLIC-DI обеспечивает двунаправленную связь с промышленными и коммерческими моделями кондиционеров.

- Обеспечивает управление основными функциями кондиционера, а также обработку внутренних ошибок кондиционера и ошибок передачи данных.
- Светодиодная индикация двусторонней передачи данных.
- Встроенный интерфейс KNX (BCU).
- Соответствует требованиям СЕ.

2. ИНСТАЛЛЯЦИЯ

2.1. ИНСТАЛЛЯЦИЯ KLIC-DI

Инсталляция KLIC-DI выполняется стандартным образом: необходимо лишь подключить прибор к шине KNX через специальный разъем KNX.

Дополнительно прибор подключается к внутренней плате кондиционерного блока (разъем P1/P2) 2-х проводным кабелем.

При использовании проводного пульта управления необходимо убедиться, что пульт находится в режиме ведомого (slave) устройства, если KLIC-DI сконфигурирован как ведущее (master) устройство. И наоборот, если KLIC-DI сконфигурирован как ведомый, то проводной пульт управления должен находиться в позиции ведущего.

После подачи питания от шины KNX в прибор могут загружаться физический адрес и прикладная программа KLIC-DI.

Данное устройство не требует какого-либо внешнего питания и работает только от напряжения питания шины KNX.

Диаграммы подключения KLIC-DI к шине P1/P2 блока кондиционера (A/C)

Рисунок 2.1 Подключение KLIC-DI к шине P1/P2

Рисунок 2.2 Подключение KLIC-DI к шине P1/P2 с проводным пультом (режим ведомый)

Обозначения на диаграммах					
A	A KLIC – DI				
В	Проводной пульт управления				
С	С Блок кондиционера А/С				
P1 - P2	Р1 - Р2 Подключение шины				
1 - 2	1 - 2 Разъем подключения шины Zennio				
*	Проводной пульт должен работать в режиме противоположном режиму KLIC-DI				

2.2. ОПИСАНИЕ ЭЛЕМЕНТОВ

- Prog: Кнопка программирования. При подаче питания от шины KNX во время удержания этой кнопки устанавливается «безопасный режим».
- Led: Световой сигнал, указывающий на состояние прибора. Кроме красного светодиода (как у любого устройства KNX) у KLIC-DI имеются голубой и зеленый светодиоды для индикации двунаправленной передачи данных между системой KNX и кондиционером, что очень удобно во время инсталляции. Значения цветов:
 - Красный: индикатор режима программирования. Если он горит, то активен "Режим программирования". Мигание красного светодиода с периодом 0.5 сек указывает на "Безопасный режим".

- Зеленый: ошибка питания в KLIC-DI (это может иметь место, если KLIC-DI не подключен к кондиционеру и/или на кондиционер не подано электропитание).
- Мигающий зеленый: передача данных от кондиционера к KLIC-DI.
- Мигающий синий: передача данных от KLIC-DI к кондиционеру.
- Коммуникационный кабель: 2-х проводной кабель, подключаемый к клеммам P1/P2 внутренней платы кондиционера или проводного пульта.

N°	Описание
1	Разъем шины KNX
2	Светодиодный индикатор для программирования
3	Кнопка для программирования
4	2-х полюсный разъем подключения кондиционера

3. КОНФИГУРАЦИЯ

3.1. ОСНОВНЫЕ ФУНКЦИИ УПРАВЛЕНИЯ

С KLIC-DI возможен мониторинг и управление кондиционером аналогично проводному пульту управления, поставляемому с кондиционером.

Следующие основные функции управления кондиционером могут быть выполнены через сеть KNX:

- Вкл/Выкл кондиционера.
- Температурная уставка: от 16 до 32 °С.
- Рабочий режим: Авто, Обогрев, Сушка, Вентиляция и Охлаждение.
- Скорость вентилятора: 2 или 3 ступени скорости. (Определите доступное количество скоростей вентилятора кондиционера).

Эти функции ассоциированы со статусом кондиционера, который периодически отсылается в KLIC-DI. Когда KLIC-DI получает статус, отличающийся от принятого ранее, он обновляет значение соответствующего параметра в сети KNX.

3.2. РАСШИРЕННЫЕ ФУНКЦИИ

Кроме основных функций управления кондиционером, KLIC-DI предлагает дополнительные функции по сравнению с проводным пультом:

- Конфигурация сцен: позволяет установить специальную комбинацию параметров для кондиционера.
- Автоматическое выключение: позволяет временно выключить кондиционер, если происходит изменение статуса коммуникационного объекта, связанного с этой функцией. Примером этой функции является использование датчика открытия окна для выключения кондиционера, когда окно открыто.
- Ограничение температуры: Коммерческие кондиционеры имеют ограничение по температуре (обычно 16-32 °С. Уточните диапазон для конкретной модели в руководстве по эксплуатации). Эта функция KLIC позволяет устанавливать пользовательские диапазоны для режимов Обогрев и Охлаждение с помощью ETS

таким образом, что температурная уставка будет всегда оставаться внутри диапазона. В случае получения температурной уставки из KNX вне установленных границ, в кондиционер будет послано значение температуры равное соответствующему пределу.

Внутренняя температура и Опорная температура: Коммерческие кондиционеры используют несколько сенсоров для измерения температуры в разных точках внутри помещения.

Внутренняя температура измеряется внутри кондиционера и используется вместе с **Опорной температурой** для управления в режимах Авто-Охлаждение и Авто-Обогрев кондиционера.

Опорная температура - это фактическая температура в климатизируемом помещении. Этот параметр должен быть передан в кондиционер через соответствующий коммуникационный объект. Настоятельно рекомендуется связывать этот объект с температурным датчиком (установленным в помещении), который периодически обновляет значение фактической температуры.

Кондиционер управляет режимами Авто-Охлаждение и Авто-Обогрев тремя способами:

- 1. Кондиционер принимает значение Опорной температуры и, в соответствии с установленным заранее инсталлятором гистерезисом, выбирает соответствующий авто-режим.
- 2. Кондиционер использует значение *Внутренней температуры* и, в соответствии с установленным заранее инсталлятором гистерезисом, выбирает соответствующий авто-режим.
- 3. Кондиционер устанавливает авто-режим в соответствии со средним значением Опорной температуры и Внутренней температуры.

Значение температуры, используемое кондиционером для переключения между режимами Авто-Охлаждение и Авто-Обогрев зависит от конфигурации, установленной при инсталляции кондиционера. Это значение в любом из перечисленных выше случаев сравнивается с температурной уставкой. Если уставка выше, то устанавливается режим Авто-Обогрев и, если уставка ниже, то устанавливается Авто-Охлаждение.

Внимание: Рекомендуется связывать значение Опорной температуры с датчиком, который периодически измеряет фактическую температуру в помещении, так как способ переключения между авто-режимами может быть неизвестен и это обстоятельство может приводить к неправильной работе Авто режима. Значение Опорной температуры по умолчанию равно 25°С.

Обработка ошибок: эта функция позволяет посылать в шину KNX сообщения об ошибках. При этом обрабатываются коды ошибок кондиционера и любые ошибки, возникающие при передаче данных.

Помимо сообщения о появлении ошибок можно также настроить отправку кода ошибки.

В следующей таблице приводятся числовые коды соответствующие различным типам внутренних ошибок:

Код ошибки	Тип внутренней ошибки		
1	Проблемы с приемом данных (скорость, четность и т.д.)		
2	Превышено время ожидания передачи (Time-out)		
3	Неправильная контрольная сумма		
4	Неправильный ответ кондиционера		

Относительно числовых кодов внешних ошибок обращайтесь к руководству по эксплуатации установленного кондиционера или к Приложению II Соответствие кодов ошибок кондиционеров.

Начальная конфигурация:

Все параметры состояния кондиционера после его установки или отключения питания должны быть вновь инициализированы. С этой целью в KLIC предусмотрена возможность определения начальных значений параметров кондиционера Вкл/Выкл, температура, скорость вентилятора.

Значения инициализации могут быть отправлены как в шину KNX, так и в кондиционер.

🧈 Тип управления: Ведущий (Master)/Ведомый (Slave)

Важно принимать во внимание тип управления, *ведущий* или *ведомый*, который предполагается сконфигурировать в KLIC-DI.

Пульт управления в режиме *ведущий* отвечает за связь с кондиционером и передает команды и переменные состояния между кондиционером и *ведомыми* пультами, если они

присутствуют. Все функции управления могут быть выполнены с пульта, независимо от режима его работы – *ведущий* или *ведомый*.

Такая функциональность позволяет иметь как KLIC-DI, так и проводной пульт в инсталляции и выбирать желаемую конфигурацию *ведущий/ведомый*, при условии, что KLIC-DI и проводной пульт настроены на разные режимы. В случае, когда оба устройства сконфигурированы как *ведущие*, на дисплее проводного пульта отобразится ошибка "88" и в шину KNX будет послан код ошибки "U5".

Имейте в виду: Когда в проводном пульте переключается режим работы *ведущий / ведомый* с одного на другой, необходимо отключить и вновь подать на пульт электропитание для его перезагрузки в соответствии с новым режимом.

Важно: Проводной пульт BRC1E51A7 может работать только в режиме ведущий. Если в инсталляции используется данная модель проводного пульта, то KLIC-DI должен быть установлен в режим *ведомый*.

Логические функции

KLIC-DI для коммерческих моделей кондиционеров оснащен функциональным модулем, аналогично актуаторам Zennio.

Может быть реализовано до 5 логических функций по 4 операции в каждой функции.

Для получения подробной информации по этой теме пользователь может обратиться к руководствам по эксплуатации для актуаторов Zennio (MAX6, QUATRO or Classic-Hybrid).

4. ПАРАМЕТРИЗАЦИЯ

Для того чтобы начать параметризацию устройства, необходимо открыть программу ETS и импортировать базу данных **KLIC-DI 1.6.vd2**.

Затем KLIC добавляется в тот проект, в котором вы хотите его иметь. Для того, чтобы начать процесс конфигурирования, кликните правой кнопкой мыши на устройстве и выберите пункт "Обработка параметров".

В следующих разделах приведено подробное объяснение по настройке каждой из функций устройства в ETS.

4.1. КОНФИГУРАЦИЯ ПО УМОЛЧАНИЮ

Этот раздел демонстрирует настройку по умолчанию, с которой начинается процесс конфигурирования.

Если окно "Обработка параметров" открывается в первый раз, то выводятся значения по умолчанию Основных параметров (**General**) KLIC.

Следующий рисунок демонстрирует окно Основных параметров с их значениями по умолчанию:

1.1.1 KLIC-DI		23	
GENERAL	GENERAL		
FAN	Scenes	No	
	Temperature Limitation	No	
	Auto OFF	No	
	Errors Management	No	
	Type of Control	Master Control 🗸	
	Indoor Temp. Sending Time [x1 sec]	30	
	Initial Configuration	Default 👻	
	Logical Functions	No 👻	
	OK Car	ncel Default Info Help	

Рисунок 4.1 Основные параметры по умолчанию

Как видно на предыдущем рисунке, все расширенные функции – сцены, ограничение температуры, автовыключение, обработка ошибок и параметры инициализации – по умолчанию отключены.

По умолчанию, в настройках **Режим** опции Индивидуальные режимы и Простые режимы (Охлаждениеl/Обогрев) отключены; в настройках **Вентилятор** выбрана 2-х скоростная конфигурация, шаговое управление отключено.

1.1.2 KLIC-DI			×
GENERAL MODE FAN INITIAL CONFIGURATION	Individual Modes (one object per mode) Simplified Modes (only cool/heat)	MODE No No	•

Рисунок 4.2 Конфигурация режима по умолчанию

1.1.2 KLIC-DI			×
GENERAL		FAN	
FAN INITIAL CONFIGURATION	Number of Levels Step Control	2 No	-

Рисунок 4.3 Конфигурация вентилятора по умолчанию

На следующем рисунке показаны доступные по умолчанию коммуникационные объекты: включение/выключение кондиционера, температурная уставка, режим и скорость вентилятора (две скорости), а также объекты для приема значений этих переменных из кондиционера.

P	💹 Topology in KLIC-DI SKY 1.4								x
	KLIC-DI SKY 1.4	•	Number	Name	Object Function	Len	С	R	W
	i Area 1		⊒ ‡[0	On/Off	Turn ON/OFF the Machine	1 bit	С	-	W
			1 1	Temperature	Value sent to the Machine	2 Byte	С	-	W
	- 1.1.1 KLIC-DI		⊒ ‡]2	Mode	0=Aut,1=Ht,3=Cool,9=Fan,14	1 Byte	С	-	W
		-	⊒ ‡ 3	Fan [1byte]	0-49%=Low,50-100%=High	1 Byte	С	-	W
		=	⊒ द्वै4	On/Off (Status)	Machine State (ON/OFF)	1 bit	С	R	-
	2 3: Fan [1byte] - 0-49%=Low.50-100%=High		⊒‡ 5	Temperature (Status)	Value received from Machine	2 Byte	С	R	-
	4: On/Off (Status) - Machine State (ON/OFF)		⊒⊏‡ 6	Mode (Status)	Current Mode:0=Auto,1=Hea	1 Byte	С	R	-
	- 🛒 5: Temperature (Status) - Value received from Machir		⊒ द्व <u>ी</u> 7	Fan (Status)	25%=Low,100%=High	1 Byte	С	R	-
			⊒‡ 27	Indoor Temperature (Status)	Machine Temperature	2 Byte	С	R	-
				Reference Temperature	Reference Temperature	2 Byte	С	-	W
		Ŧ							
	۰		∢	III					•

Рисунок 4.4 Коммуникационные объекты по умолчанию

4.2. ОБЩИЕ ПАРАМЕТРЫ

В окне **Общих параметров (General)** могут быть активизированы расширенные функции:

- 👂 Сцены
- Ограничения температуры
- Автовыключение
- Управление ошибками
- Тип управления
- Время посылки внутренней температуры
- Конфигурация инициализации

Логические функции

После выбора функций в списке выпадающего меню появится доступ к конфигурационному окну в Меню слева и станут доступными соответствующие коммуникационные объекты.

Также это окно позволяет установить тип удаленного управления (type of control):

Ведущий (Master) / Ведомый(Slave)

Время посылки внутренней температуры. Внутренняя температура передается кондиционером в случае ее изменения. Этот параметр был введен для избегания чрезмерно частой передачи телеграмм с температурой. Таким образом, внутренняя температура будет передаваться с установленным периодом времени и только в случае ее изменения.

4.3. РЕЖИМ

Как ранее было видно в конфигурации по умолчанию, специальное окно Режим предоставляет пользователю следующий выбор:

Индивидуальные Режимы

После активации опции "Индивидуальные режимы" появляются два 1-битовых объекта – один для управления режимом и второй для приема статуса от кондиционера – для каждого режима (Auto, Cool, Fan, Heat и Dry) в дополнение к 1-байтовым объектам управления и индикации режимов, существующих по умолчанию. В случае активации опции "Индивидуальные режимы" рабочий режим кондиционера будет определяться через отсылаемый 1битовый объект, связанный с данным режимом. Кроме того, в сеть KNX будут отсылаться оба 1-байтовых объекта Режима для мониторинга и индикации статуса соответствующего режима.

Простые Режимы

Выбор "Простые Режимы" активирует 1-битовый объект с таким же именем, для переключения между режимами Охлаждение (значение 0) и Обогрев (значение 1).

Для этого коммуникационного объекта соответствующего объекта статуса не существует.

GENERAL		MODE
FAN SCENES TEMPERATURE LIMITATION AUTO OFF ERRORS MANAGEMENT INITIAL CONFIGURATION	Individual Modes (one object per mode) Simplified Modes (only cool/heat)	Yes ▼ Yes ▼

Рисунок 4.5 Режим

4.4. СКОРОСТЬ ВЕНТИЛЯТОРА

В этом окне можно выбрать количество ступеней скорости вентилятора, предоставляемое кондиционером: **2 или 3** ступени.

GENERAL		FAN	
FAN SCENES TEMPERATURE LIMITATION AUTO OFF ERRORS MANAGEMENT INITIAL CONFIGURATION	Number of Levels Step Control	3 No	•

Рисунок 4.6 Скорость вентилятора

Скорость вентилятора связана с двумя 1-байтовыми коммуникационными объектами для контроля и индикации скорости вентилятора. Объект контроля записывает скорость в процентах. По этой причине величина скорости будет интерполироваться так, чтобы соответствовать выбранному числу ступеней скорости. Объект статуса покажет скорость в интерполяции в процентах.

Две ступени скорости вентилятора

В случае 2-х ступеней скорости вентилятора, скорость будет интерполирована в процентах следующим образом:

Начальная Интерполяция Уровень	Начальная	Интерполяция	Уровень
--------------------------------	-----------	--------------	---------

скорость,%	скорости, %	
0 - 49%	25 %	Минимум
50 - 100 %	100 %	Максимум

Три ступени скорости вентилятора

При 3-х ступенях скорости вентилятора, скорость в процентах будет интерполироваться в соответствии с таблицей:

Начальная скорость,%	Интерполяция скорости, %	Уровень
0 - 32%	25 %	Минимум
33-65 %	50 %	Средний
66-100%	100 %	Максимум

Кроме установки количества скоростей окно Вентилятор предусматривает "Шаговое управление".

Шаговое управление

Выбор опции "Шаговое управление" активирует 1-битовый объект для увеличения или уменьшения уровня скорости вентилятора:

- > Значение "1": Увеличение
- > Значение "0": Уменьшение

"Шаговое управление" не является циклическим. Это означает, что если скорость вентилятора в момент приема команды на ее уменьшение находится на уровне *Минимум* (0%), то ее значение не изменится до прихода команды на увеличение. Аналогично, максимальная скорость (100%) не изменится до ее уменьшения.

4.5. СЦЕНЫ

При вызове сцены выполняется одновременная посылка нескольких команд в кондиционер для создания определенных климатических условий в помещении.

SCENES GENERAL MODE FAN No Scene 1 • SCENES TEMPERATURE LIMITATION No Scene 2 • AUTO OFF ERRORS MANAGEMENT Scene 3 No INITIAL CONFIGURATION • Scene 4 No -

КLIС предоставляет возможность создания до 4-х сцен.

Рисунок 4.7 Сцены

После активации опции Сцены в Общих параметрах в Меню слева появляется пункт Сцены.

1.1.1 KUC-DI												
GENERAL	S	SCENES										
GENERAL MODE FAN SCENES AUTO OFF ERRORS MANAGEMENT	Scene 1 Scene Number On/Off Temperature New Temperature Mode Fan Scene 2 Scene 3	Yes 1 ON New Temperature 25 Heat Minimum No										
	Scene 4	No										

Рисунок 4.8 Пример настройки сцен

Для каждой из 4-х сцен могут быть настроены следующие параметры:

Cцены 1-4:

Номер сцены: Номер сцены в проекте.

ВКЛ/ВЫКЛ: Не меняется, Вкл. или Выкл. кондиционера.

Температура: Не меняется, значение температуры от 16°С до 32°С.

Режим: Не меняется, Auto, Cool, Fan, Heat и Dry.

Вентилятор: Не меняется, минимум, средняя или максимум.

4.6. ОГРАНИЧЕНИЕ ТЕМПЕРАТУРЫ

В кондиционере определены верхняя и нижняя границы температуры, выход за которые невозможен (обычно это 32°С и 16°С соответственно). Тем не менее, КLIС предоставляет возможность установки новых температурных пределов, если они находятся внутри допустимого кондиционером диапазона.

Температурные границы могут быть установлены индивидуально для каждого из тепловых режимов кондиционера – Охлаждения (Cool) и Обогрева (Heat).

1.1.1 KLIC-DI				X								
GENERAL	TEMPERATURE LIMITATION											
FAN SCENES	COOL MODE											
AUTO OFF	Minimum		23	×								
ERRORS MANAGEMENT INITIAL CONFIGURATION	Maximum		28									
	HEAT MODE											
	Minimum		19									
	Maximum		26									
	1											
		OK Cancel	Default Info	Help								

Рисунок 4.9 Ограничение температуры

Если при установленных температурных границах из сети KNX посылается значение температуры вне допустимого диапазона, то в кондиционер и в сеть KNX передается новое значение равное соответствующему температурному пределу.

В качестве новой функции был введен 1-битовый коммуникационный объект для включения (значение "1") или отключения (значение "0") пользователем температурных границ и восстановления диапазона по умолчанию.

Имейте в виду: После установки температурных границ в ETS, эта функция автоматически активизируется, и индивидуальные температурные ограничения будут влиять на работу кондиционера после его включения.

4.7. АВТОМАТИЧЕСКОЕ ВЫКЛЮЧЕНИЕ

Когда эта опция выбрана, кондиционер временно выключается, в случае если меняется состояние ассоциированного с данной функцией битового объекта.

Эта функция имеет один настраиваемый параметр:

Задержка Автовыключения: Время задержки в секундах, через которое KLIC-DI выключает кондиционер.

1.1.1 KLIC-DI			×
GENERAL		AUTO OFF	
FAN SCENES	Delay for Auto-OFF [x 1sec]	20	×
TEMPERATURE LIMITATION			
ERRORS MANAGEMENT INITIAL CONFIGURATION			

Рисунок 4.10 Автоматическое выключение

4.8. ОБРАБОТКА ОШИБОК

Окно настройки обработки ошибок позволяет активизировать посылку в шину KNX сообщений о возникающих ошибках: внутренних ошибках связи между KLIC-DI и кондиционером или внешних ошибках внутри кондиционера.

Можно разрешить сообщения о внутренних, внешних или обоих типах ошибок:

Внутренние (Internal) ошибки: Да или Нет.

Внешние (External) ошибки: Да или Нет.

Каждый тип ошибок связан с двумя коммуникационными объектами: первый, битовый, устанавливается, если ошибка имела место; второй, байтовый, записывает код ошибки.

GENERAL	ERRORS MANAGEMENT									
FAN SCENES TEMPERATURE LIMITATION AUTO OFF ERRORS MANAGEMENT INITIAL CONFIGURATION	Internal Errors External Errors	Yes No								

4.9. ПАРАМЕТРЫ ИНИЦИАЛИЗАЦИИ

Окно настройки параметров инициализации позволяет задать начальное состояние кондиционера после его установки или отключения питания.

Ниже перечислены инициализируемые параметры:

- ВКЛ/ВЫКЛ: Последнее, Включено или Выключено.
- Температура: Последнее или настраиваемое значение (custom).
- Режим: Последнее, Авто, Обогрев, Сушка, Вентилятор или Холод.
- Вентилятор: Последнее, Авто, Минимум, Минимум-Среднее, Среднее, Максимум-Среднее или Максимум.

Кроме этого, можно настраивать посылку статуса инициализации в шину KNX или кондиционер, а также время, когда это должно происходить:

- Посылать параметры инициализации в шину KNX?: Да или Нет.
- Задержка: Время задержки в секундах, через которое KLIC посылает статус инициализации в шину KNX.

1.1.1 KUC-DI													
GENERAL	INITIAL CONFIGURATION												
MODE FAN SCENES TEMPERATURE LIMITATION AUTO OFF ERRORS MANAGEMENT INITIAL CONFIGURATION	On/Off Temperature Mode Fan Send Initial Configuration to BUS? Delay [x 1sec]	Last Last Last Ves 10											
	OK Can	icel Default Info Help											

Рисунок 2.12 Параметры инициализации

ПРИЛОЖЕНИЕ І. КОММУНИКАЦИОННЫЕ ОБЪЕКТЫ

СЕКПИЯ	HOMED	ллица		флаги		ЗНАЧЕНИЯ			
Сскция	HOWIEP	длипа		ФЛАГИ	диапазон	НАЧАЛЬНОЕ	СБРОС		пазначение обректа
	0	1 bit	Ι	W	0/1	0		вкл/выкл	Включение (1) /Выключение(0) кондиционера
	1	2 bytes	Ι	W	16-32			Температура	Запись температуры в кондиционер
	2	1 byte	Ι	w	0-255			Режим	Авто(0); Обогрев(1); Охлаждение(3); Вентиляция(9); Сушка(14)
	3	1 byte	I	w	0-255			Вентилятор	2 ступени: Минимум (0-49%); Максимум (50%- 100%) 3 ступени: Минимум (0-32%); Средняя(33%-65%); Максимум (66%-100%)
OFWINE	4	1 bit	0	R-T	0/1			ВКЛ/ВЫКЛ (Статус)	Состояние кондиционера (ВКЛ/ВЫКЛ)
	5	2 bytes	0	R-T	16-32			Температура (Статус)	Температура от кондиционера
ПАРАМЕТРЫ	6	1 byte	0	R-T	0-255			Режим (Статус)	Режим от кондиционера
	7	1 byte	0	R-T	0-255			Вентилятор (Статус)	2 ступени: Минимум (25%); Максимум (100%) 3 ступени: Минимум (25%); Средняя(50%); Максимум (100%)
	20	1 byte	I	W	0-255			Сцены	Вызов сцены (номер сцены)
	21	1 bit	Ι	W	0/1			Ограничение температуры	Включено (1); Выключено (0)
	22	1 bit	I	w	0/1			Автовыключение	Включено (1); Выключено (0)
	27	2 bytes	0	R-T	0-255			Внутренняя температура (Статус)	Температура датчика кондиционера
	28	2 bytes	0	W	0-255			Опорная температура	Температура внешнего датчика
ZENNIO AVANCE Y 1	recnología								www.zennio.com

CEVILIA				ф ПА ГІ4	ЗНАЧЕНИЯ			14.co				
Секция	HOIVIEP	длипа		ΦЛΑΓИ	диапазон	НАЧАЛЬНОЕ	СБРОС	кми	пазначение объекта			
	8	1 bit	I	W-T	0/1			Режим Авто	Установка режима Авто(1); ничего (0)			
	9	1 bit	I	W-T	0/1			Режим Охлаждение	Установка режима Охлаждение (1); ничего (0)			
	10	1 bit	I	W-T	0/1			Режим Обогрев	Установка режима Обогрев (1); ничего (0)			
	11	1 bit	I	W-T	0/1			Режим Вентиляция	Установка режима Вентиляция (1); ничего (0)			
	12	1 bit	I	W-T	0/1			Режим Сушка	Установка режима Сушка(1); ничего (0)			
	13	1 bit	I	W	0/1			Простой режим	Охлаждение(0); Обогрев(1)			
DEWIAM	14	1 bit	0	R-T	0/1			Режим Авто (Статус)	Режим Авто активен (1); не активен (0)			
	15	1 bit	0	R-T	0/1			Режим Охлаждение (Статус)	Режим Охлаждение активен (1); не активен (0)			
РЕЖИМ	16	1 bit	0	R-T	0/1			Режим Обогрев (Статус)	Режим Обогрев активен (1); не активен (0)			
	17	1 bit	0	R-T	0/1			Режим Вентиляция (Статус)	Режим Вентиляция активен (1); не активен (0)			
	18	1 bit	0	R-T	0/1			Режим Сушка (Статус)	Режим Сушка активен (1); не активен (0)			
вентилятор	19	1 bit	I	W	1			Вентиляция [1бит] (Статус)	Меньше(0); Больше(1)			
	23	1 bit	0	R-T	0/1			Внутренняя ошибка (Статус)	Нет ошибки(0); Ошибка(1)			
ОБРАБОТКА	24	1 byte	0	R-T	1-4			Тип внутренней ошибки (Статус)	Получена ошибка(1);Таймаут (2); Ошибка контрольной суммы (3); Ошибка отклика(4)			
OMNBOK	25	1 bit	0	R-T	0/1			Внешняя ошибка (Статус)	Нет ошибки(0); Ошибка(1)			
	26	1 byte	0	R-T	0-255			Тип внешней ошибки (Статус)	См. таблицу кодов ошибок кондиционера			
ЛОГИЧЕСКИЕ ФУНКЦИИ	27-75	Several		W-C				[Логические функции]	Объекты ввода данных и результата функции			

ПРИЛОЖЕНИЕ II. КОДЫ ОШИБОК КОНДИЦИОНЕРА

Следующая таблица демонстрирует соответствие между кодами внешних ошибок отсылаемых KLIC-DI в шину KNX и кодами ошибок кондиционеров:

ERROR		ERROR	1	ERROR		ERROR	-												
BUS	CODE																		
1	1	27	AH	53	E5	79	HF	105	J9	131	P3	157	UJ	183	87	209	61	235	5H
2	2	28	AC	54	E6	80	FO	106	JA	132	P4	158	UE	184	88	210	62	236	5C
3	3	29	AJ	55	E7	81	F1	107	JH	133	P5	159	UF	185	89	211	63	237	5J
4	4	30	AE	56	E8	82	F2	108	JC	134	P6	160	90	186	8A	212	64	238	5E
5	5	31	AF	57	E9	83	F3	109	IJ	135	P7	161	91	187	8H	213	65	239	5F
6	6	32	C0	58	EA	84	F4	110	JE	136	P8	162	92	188	8C	214	66	240	40
7	7	33	C1	59	EH	85	F5	111	JF	137	Р9	163	93	189	8J	215	67	241	41
8	8	34	C2	60	EC	86	F6	112	LO	138	PA	164	94	190	8E	216	68	242	42
9	9	35	C3	61	EJ	87	F7	113	L1	139	PH	165	95	191	8F	217	69	243	43
10	0A	36	C4	62	EE	88	F8	114	L2	140	PC	166	96	192	70	218	6A	244	44
11	0H	37	C5	63	EF	89	F9	115	L3	141	PJ	167	97	193	71	219	6H	245	45
12	0C	38	C6	64	H0	90	FA	116	L4	142	PE	168	98	194	72	220	6C	246	46
13	OJ	39	C7	65	H1	91	FH	117	L5	143	PF	169	99	195	73	221	6J	247	47
14	0E	40	C8	66	H2	92	FC	118	L6	144	U0	170	9A	196	74	222	6E	248	48
15	0F	41	C9	67	H3	93	FJ	119	L7	145	U1	171	9H	197	75	223	6F	249	49
16	A0	42	СА	68	H4	94	FE	120	L8	146	U2	172	9C	198	76	224	50	250	4A
17	A1	43	СН	69	H5	95	FF	121	L9	147	U3	173	9J	199	77	225	51	251	4H
18	A2	44	СС	70	H6	96	JO	122	LA	148	U4	174	9E	200	78	226	52	252	4C
18	A2	44	СС	70	H6	96	JO	122	LA	148	U4	174	9E	200	78	226	52	252	

ZENNIO AVANCE Y TECNOLOGÍA

www.zennio.com

ERROR																			
BUS	CODE																		
19	A3	45	CJ	71	H7	97	J1	123	LH	149	U5	175	9F	201	79	227	53	253	4J
20	A4	46	CE	72	H8	98	J2	124	LC	150	U6	176	80	202	7A	228	54	254	4E
21	A5	47	CF	73	H9	99	J3	125	IJ	151	U7	177	81	203	7H	229	55	255	4F
22	A6	48	EO	74	HA	100	J4	126	LE	152	U8	178	82	204	7C	230	56		
23	A7	49	E1	75	нн	101	J5	127	LF	153	U9	179	83	205	7J	231	57		
24	A8	50	E2	76	HC	102	J6	128	PO	154	UA	180	84	206	7E	232	58		
25	A9	51	E3	77	HJ	103	J7	129	P1	155	UH	181	85	207	7F	233	59		
26	AA	52	E4	78	HE	104	J8	130	P2	156	UC	182	86	208	60	234	5A		

РЕГИСТРИРУЙТЕСЬ! http://zennioenglish.zendesk.com ТЕХНИЧЕСКАЯ ПОДДЕРЖКА